JETP Letters

, Volume 106, Issue 4, pp 229–233 | Cite as

Collapse of islands in freely suspended smectic nanofilms

  • P. V. Dolganov
  • E. I. Kats
  • V. K. Dolganov
Condensed Matter


A time-nonlinear stage of the collapse of islands in freely suspended smectic nanofilms is observed and investigated. Islands thicker than a nanofilm are prepared and studied, which are unstable inside the dislocation loops, since they increase the energy of the film. Such instability leads to the decrease in the size of islands and is terminated by their collapse. The time dependence of the size of islands is measured experimentally. It is shown that the found dependence is in agreement with the theory of the dynamics of dislocation loops in smectic films developed earlier with allowance for the dissipation of energy in the film and in the meniscus. A nontrivial dynamic coupling between islands in a film resembling Ostwald ripening is also found, though the nonequilibrium kinetics of unstable islands, at which the hydrodynamic flow through a film leads to the decrease in sizes of one island and the increase in those of the other, rather than of the growth of the nucleation centers in the thermodynamically stable phase from the metastable state of the system (described by the Lifshitz–Slezov theory in films), is studied in our experiments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Pieranski, L. Beliard, J.-Ph. Tournellec, X. Leoncini, C. Furtlehner, H. Dumoulin, E. Riou, B. Jouvin, J. P. Fénerol, Ph. Palaric, J. Heuving, B. Cartier, and I. Kraus, Physica A 194, 364 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    C. Bohley and R. Stannarius, Soft Matter 4, 683 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    F. Picano, P. Oswald, and E. Kats, Phys. Rev. E 63, 021705 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    R. Jaquet and F. Schneider, Phys. Rev. E 67, 021707 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    P. V. Dolganov, P. Cluzeau, J. Goly, V. K. Dolganov, and H. T. Nguyen, Phys. Rev. E 72, 031713 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    J. Israelachvili, Interaction and Surface Forces, 2nd ed. (Academic, London, 1992).Google Scholar
  7. 7.
    T. Stoebe, P. Mach, and C. C. Huang, Phys. Rev. Lett. 73, 1384 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    E. I. Demikhov, V. K. Dolganov, and K. P. Meletov, Phys. Rev. E 52, R1285 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    J.-Ch. Géminard, R. Holyst, and P. Oswald, Phys. Rev. Lett. 78, 1924 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    J.-Ch. Géminard, C. Laroche, and P. Oswald, Phys. Rev. E 58, 5923 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    F. Picano, R. Holyst, and P. Oswald, Phys. Rev. E 62, 3747 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    A. Zyvocinski, F. Picano, P. Oswald, and J.-Ch. Géminard, Phys. Rev. E 62, 8133 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    P. Oswald, P. Pieranski, F. Picano, and R. Holyst, Phys. Rev. Lett. 88, 015503 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    P. Oswald, F. Picano, and F. Caillier, Phys. Rev. E 68, 061701 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    A. Pattanaporkratana, C. S. Park, J. E. Maclennan, and N. A. Clark, Ferroelectrics 310, 131 (2004).CrossRefGoogle Scholar
  16. 16.
    Z. H. Nguyen, C. S. Park, J. Pang, and N. A. Clark, Proc. Natl. Acad. Sci. 109, 12873 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    P. Oswald and P. Pieranski, Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor and Francis, Boca Raton, FL, 2005).CrossRefGoogle Scholar
  18. 18.
    W. Z. Ostwald, Phys. Chem. 37, 385 (1901).Google Scholar
  19. 19.
    I. M. Lifshits and V. V. Slezov, Sov. Phys. JETP 8, 331 (1958).Google Scholar
  20. 20.
    M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964).Google Scholar
  21. 21.
    J.-C. Loudet, P. V. Dolganov, P. Patricio, H. Saadaoui, and P. Cluzeau, Phys. Rev. Lett. 106, 117802 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    F. Caillier and P. Oswald, Phys. Rev. E 70, 031704 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    A. A. Sonin and D. Langevin, Europhys. Lett. 22, 271 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    A. Eremin, S. Baumgarten, K. Harth, and R. Stannarius, Phys. Rev. Lett. 107, 268301 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations