JETP Letters

, Volume 106, Issue 4, pp 213–216 | Cite as

Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

  • A. Saleev
  • N. N. Nikolaev
  • F. Rathmann
  • F. Hinder
  • J. Pretz
  • M. Rosenthal
Fields, Particles, and Nuclei
  • 29 Downloads

Abstract

Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up–down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    JEDI Collab., Proposals. http://collaborations.fzjuelich.de/ikp/jedi/.Google Scholar
  2. 2.
    V. Anastassopoulos, S. Andrianov, R. Baartman, et al., Rev. Sci. Instrum. 87 (11), 115116 (2016); arXiv:1502.04317 [physics.acc-ph].ADSCrossRefGoogle Scholar
  3. 3.
    Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, Phys. Rev. Lett. 96, 214802 (2006); hep-ex/0605022.ADSCrossRefGoogle Scholar
  4. 4.
    P. Benati, D. Chiladze, J. Dietrich, et al., Phys. Rev. ST Accel. Beams 15, 124202 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    F. Rathmann, A. Saleev, and N. Nikolaev, J. Phys.: Conf. Ser. 447, 012011 (2013).Google Scholar
  6. 6.
    G. Guidoboni E. J. Stephenson, Yu. F. Orlov, et al. (JEDI Collab.), Phys. Rev. Lett. 117, 054801 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    N. Hempelmann V. Hejny, J. Pretz, et al. (JEDI Collab.), Phys. Rev. Lett. 119 (1), 014801 (2017); arXiv:1703.07561 [physics.acc-ph].ADSCrossRefGoogle Scholar
  8. 8.
    F. G. Tricomi, Integral Equations, Vol. 5 of Pure and Applied Mathematics (Dover, New York, 1985).Google Scholar
  9. 9.
    M. S. Rosenthal, PhD Thesis (RWTH Aachen Univ., 2016).Google Scholar
  10. 10.
    A. Lehrach, B. Lorentz, W. Morse, N. Nikolaev, and F. Rathmann, arXiv:1201.5773 [hep-ex].Google Scholar
  11. 11.
    A. Saleev, N. N. Nikolaev, F. Rathmann, et al. (JEDI Collab.), Phys. Rev. Accel. Beams 20, 072801 (2017); arXiv:1703.01295 [physics.acc-ph].ADSCrossRefGoogle Scholar
  12. 12.
    N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Non-linear Oscillation (Gordon and Breach, New York, 1961).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. Saleev
    • 1
    • 2
  • N. N. Nikolaev
    • 3
    • 4
  • F. Rathmann
    • 1
  • F. Hinder
    • 1
    • 5
  • J. Pretz
    • 1
    • 5
    • 6
  • M. Rosenthal
    • 5
    • 7
  1. 1.Institut für KernphysikForschungszentrum JülichJülichGermany
  2. 2.Samara National Research UniversitySamaraRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Moscow Institute for Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  5. 5.III. Physikalisches Institut BRWTH Aachen UniversityAachenGermany
  6. 6.JARA-FAME (Forces and Matter Experiments)Forschungszentrum Jülich and RWTH Aachen UniversityAachenGermany
  7. 7.CERNMeyrinSwitzerland

Personalised recommendations