JETP Letters

, Volume 106, Issue 4, pp 234–241 | Cite as

Effective Minkowski-to-Euclidean signature change of the magnon BEC pseudo-Goldstone mode in polar 3He

  • J. Nissinen
  • G. E. Volovik
Condensed Matter


We discuss the effective metric experienced by the Nambu–Goldstone mode propagating in the broken symmetry spin-superfluid state of coherent precession of magnetization. This collective mode represents the phonon in the RF driven or pulsed out-of-equilibrium Bose–Einstein condensate (BEC) of optical magnons. We derive the effective BEC free energy and consider the phonon spectrum when the spin superfluid BEC is formed in the anisotropic polar phase of superfluid 3He, experimentally observed in uniaxial aerogel 3He-samples. The coherent precession of magnetization experiences an instability at a critical value of the tilting angle of external magnetic field with respect to the anisotropy axis. From the action of quadratic deviations around equilibrium, this instability is interpreted as a Minkowski-to-Euclidean signature change of the effective phonon metric. We also note the similarity between the magnon BEC in the unstable region and an effective vacuum scalar “ghost” condensate.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. B. Sonin, Adv. Phys. 59, 181 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    A. F. Andreev and V. I. Marchenko, Sov. Phys. Usp. 23, 21 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    A. Qaiumzadeh, H. Skarsvag, C. Holmqvist, and A. Brataas, Phys. Rev. Lett. 118, 137201 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).zbMATHGoogle Scholar
  5. 5.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).zbMATHGoogle Scholar
  6. 6.
    S. Autti, V. V. Dmitriev, J. T. Mäkinen, A. A. Soldatov, G. E. Volovik, A. N. Yudin, V. V. Zavjalov, and V. B. Eltsov, Phys. Rev. Lett. 117, 255301 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    M. Schmaltz and D. Tucker-Smith, Ann. Rev. Nucl. Part. Sci. 55, 229 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Zavyalov, S. Autti, V. B. Eltsov, P. Heikkinen, and G. E. Volovik, Nat. Commun. 7, 10294 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    V. P. Mineev and G. E. Volovik, Phys. Rev. B 18, 3197 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskiy, JETP Lett. 40, 1033 (1984).ADSGoogle Scholar
  11. 11.
    A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskiy, Sov. Phys. JETP 61, 1199 (1985).Google Scholar
  12. 12.
    I. A. Fomin, JETP Lett. 40, 1037 (1984).ADSGoogle Scholar
  13. 13.
    F. Wilczek, Phys. Rev. Lett. 111, 250402 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    G. E. Volovik, JETP Lett. 98, 491 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    K. Sacha and J. Zakrzewski, arXiv:1704.03735.Google Scholar
  16. 16.
    Yu. M. Bunkov and G. E. Volovik, in Novel Superfluids, Ed. by K. H. Bennemann and J. B. Ketterson, Int. Ser. Monographs Phys. 156, 253 (2013), arXiv:1003.4889.CrossRefGoogle Scholar
  17. 17.
    I. A. Fomin, JETP Lett. 28, 334 (1978).ADSGoogle Scholar
  18. 18.
    I. A. Fomin, Sov. Phys. JETP 51, 1203 (1980).ADSGoogle Scholar
  19. 19.
    I. A. Fomin, JETP Lett. 43, 171 (1986).ADSGoogle Scholar
  20. 20.
    I. A. Fomin, in Helium Three (Elsevier, Amsterdam, 1990), p. 609.Google Scholar
  21. 21.
    Yu. M. Bun’kov, V. V. Dmitriev, and Yu. M. Mukharskii, JETP Lett. 143, 168 (1986).ADSGoogle Scholar
  22. 22.
    V. V. Dmitriev, V. V. Zavjalov, and D. Ye. Zmeev, J. Low Temp. Phys. 138, 765 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    M. Človečko, E. Gažo, M. Kupka, and P. Skyba, Phys. Rev. Lett. 100, 155301 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    M. Kupka and P. Skyba, Phys. Rev. B 85, 184529 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    V. E. Demidov, O. Dzyapko, S. O. Demokritov, G. A. Melkov, and A. N. Slavin, Phys. Rev. Lett. 100, 047205 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    D. A. Bozhko, A. A. Serga, P. Clausen, V. I. Vasyuchka, F. Heussner, G. A. Melkov, A. Pomyalov, V. S. Lvov, and B. Hillebrands, Nat. Phys. 12, 1057 (2016).CrossRefGoogle Scholar
  27. 27.
    C. Sun, T. Nattermann, and V. L. Pokrovsky, Phys. Rev. Lett. 116, 257205 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).ADSCrossRefGoogle Scholar
  29. 29.
    V. V. Zavjalov, S. Autti, V. B. Eltsov, and P. J. Heikkinen, JETP Lett. 101, 802 (2015).ADSCrossRefGoogle Scholar
  30. 30.
    S. Weinfurtner, A. White, and M. Visser, Phys. Rev. D 76, 124008 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    V. V. Dmitriev, D. A. Krasnikhin, N. Mulders, A. A. Senin, G. E. Volovik, and A. N. Yudin, JETP Lett. 91, 599 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    R. Arnowitt, S. Deser, and C. W. Misner, in Gravitation: An Introduction to Current Research, Ed. by L. Witten (Wiley, New York, 1962), p. 227.Google Scholar
  33. 33.
    R. Arnowitt, S. Deser, and C. W. Misner, Gen. Rel. Gravit. 40, 1997 (2008).ADSCrossRefGoogle Scholar
  34. 34.
    E. Kajari, R. Walser, W. P. Schleich, and A. Delgado, Gen. Rel. Grav. 36, 2289 (2004).ADSCrossRefGoogle Scholar
  35. 35.
    V. P. Frolov and K. A. Stevens, Phys. Rev. D 70, 044035 (2004).ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, J. High Energy Phys. 0405, 074 (2004).ADSCrossRefGoogle Scholar
  37. 37.
    G. E. Gurgenishvili and G. A. Kharadze, JETP Lett. 42, 461 (1985).ADSGoogle Scholar
  38. 38.
    Yu. M. Bunkov and G. E. Volovik, Europhys. Lett. 21, 837 (1993).ADSCrossRefGoogle Scholar
  39. 39.
    E. Witten, Commun. Math. Phys. 80, 381 (1981).ADSCrossRefGoogle Scholar
  40. 40.
    S. Mukohyama and J.-P. Uzan, Phys. Rev. D 87, 065020 (2013).ADSCrossRefGoogle Scholar
  41. 41.
    H. Motohashi and Wayne Hu, arXiv:1408.4813.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto UniversityAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations