Advertisement

JETP Letters

, Volume 106, Issue 1, pp 51–56 | Cite as

Multiferroic based on nanoparticles consisting of a silica nucleus and a shell of spin-variable iron complexes

  • A. I. AleksandrovEmail author
  • N. A. Tebeneva
  • V. G. Shevchenko
  • I. A. Aleksandrov
  • I. B. Meshkov
  • A. M. Muzafarov
Miscellaneous
  • 45 Downloads

Abstract

A new class of high-temperature multiferroics has been created. They are polymer composites based on a polystyrene matrix and nucleus–shell nanoparticles, where the nucleus consists of silica nanoparticles and the shell consists of Fe(III) spin-variable ions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Neel, Ann. Phys. 4, 243 (1949).Google Scholar
  2. 2.
    A. S. Borovik-Romanov and M. P. Orlova, Sov. Phys. JETP 4, 531 (1956).Google Scholar
  3. 3.
    I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958).ADSCrossRefGoogle Scholar
  4. 4.
    T. Moriya, Phys. Rev. 120, 91 (1960).ADSCrossRefGoogle Scholar
  5. 5.
    I. E. Dzyaloshinskii, Sov. Phys. JETP 10, 623 (1959).MathSciNetGoogle Scholar
  6. 6.
    D. N. Astrov, Sov. Phys. JETP 11, 708 (1960).Google Scholar
  7. 7.
    T. H. O’Dell, The Electrodynamics of Magnetoelectric Media (Pergamon, Amsterdam, London, 1970), p. 176.Google Scholar
  8. 8.
    A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    A. R. Akbashev and A. R. Kaul, Russ. Chem. Rev. 80, 1159 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    B. Kundys, A. Lappas, M. Viret, V. Kapustianyk, V. Rudyk, S. Semak, C. Cimon, and I. Bakaimi, Phys. Rev. B 81, 224434 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    S. R. Singamaneni, J. T. Prater, and J. Narayan, Appl. Phys. Rev. 3, 031301 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    C. Lu, W. Hu, Y. Tian, and T. Wu, Appl. Phys. Rev. 2, 021304 (2016).CrossRefGoogle Scholar
  13. 13.
    D. Makarov, M. Melzer, D. Karnaushenko, and O. G. Schmidt, Appl. Phys. Rev. 3, 011101 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    A. I. Aleksandrov, I. A. Aleksandrov, and V. G. Shevchenko, JETP Lett. 104, 568 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    A. I. Aleksandrov, I. A. Allexandrov, A. I. Prokof’ev, S. P. Solodovnikov, J. S. Hwang, N. Noginova, T. Chisholm, A. Andreyev, R. Bah, and R. R. Rakhimov, J. Appl. Phys. 101, 09G508 (2007).CrossRefGoogle Scholar
  16. 16.
    I. A. Aleksandrov, O. T. Gritsenko, E. V. Getmanova, E. S. Obolonkova, O. A. Serenko, V. G. Shevchenko, A. I. Aleksandrov, and A. M. Muzafarov, Tech. Phys. 56, 491 (2011).CrossRefGoogle Scholar
  17. 17.
    M. S. Gruzdev, N. E. Domracheva, A. I. Aleksandrov, V. P. Osipova, U. V. Chervonova, A. M. Kolker, T. V. Pashkova, and D. V. Barakhtenko, J. Struct. Chem. 53, 1062 (2012).CrossRefGoogle Scholar
  18. 18.
    V. V. Kazakova, E. A. Rebrov, V. D. Myakushev, T. V. Strelkova, A. N. Ozerin, L. A. Ozerina, T. B. Chenskaya, S. S. Sheiko, E. Yu. Sharipov, and A. M. Muzafarov, ACS Symp. 503, 729 (2000).Google Scholar
  19. 19.
    A. M. Muzafarov, N. A. Tebeneva, E. A. Rebrov, N. G. Vasilenko, M. I. Buzin, and N. V. Nikolaeva, RF Patent No. 2293746.Google Scholar
  20. 20.
    E. Doelsch, W. E. E. Stone, S. Petit, A. Masion, J. Rose, J.-Y. Bottero, and D. Nahon, Langmuir 17, 1399 (2001).CrossRefGoogle Scholar
  21. 21.
    B. Johnson, B. K. Sudhakar, N. Rama Krishna Chand, K. Rayapa Reddy, and G. Srinivasa Rao, J. Non-Cryst. Solids 404, 151 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. I. Aleksandrov
    • 1
    Email author
  • N. A. Tebeneva
    • 1
  • V. G. Shevchenko
    • 1
  • I. A. Aleksandrov
    • 1
  • I. B. Meshkov
    • 1
  • A. M. Muzafarov
    • 2
  1. 1.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations