JETP Letters

, Volume 105, Issue 9, pp 577–581 | Cite as

Purcell effect in triangular plasmonic nanopatch antennas with three-layer colloidal quantum dots

  • S. P. Eliseev
  • N. S. Kurochkin
  • S. S. Vergeles
  • V. V. Sychev
  • D. A. Chubich
  • P. Argyrakis
  • D. A. Kolymagin
  • A. G. Vitukhnovskii
Optics and Laser Physics


A model describing a plasmonic nanopatch antenna based on triangular silver nanoprisms and multilayer cadmium chalcogenide quantum dots is introduced. Electromagnetic-field distributions in nanopatch antennas with different orientations of the quantum-dot dipoles are calculated for the first time with the finite element method for numerical electrodynamics simulations. The energy flux through the surface of an emitting quantum dot is calculated for the configurations with the dot in free space, on an aluminum substrate, and in a nanopatch antenna. It is shown that the radiative part of the Purcell factor is as large as 1.7 × 102 The calculated photoluminescence lifetimes of a CdSe/CdS/ZnS colloidal quantum dot in a nanopatch antenna based on a silver nanoprism agree well with the experimental results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, J. McGivney, M. A. Schenerman, and C. D. Geddes, Plasmonics 7, 739 (2012).CrossRefGoogle Scholar
  2. 2.
    L. Lin and Y. Zheng, Opt. Lett. 40, 2060 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    B. Mali, A. I. Dragan, J. Karolin, and C. D. Geddes, J. Phys. Chem. C 117, 16650 (2013).CrossRefGoogle Scholar
  4. 4.
    C. Zhao, Y. Liu, J. Yang, and J. Zhang, Nanoscale 6, 9103 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    L. Shao, Q. Ruan, R. Jiang, and J. Wang, Small 10, 802 (2014).CrossRefGoogle Scholar
  6. 6.
    K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, J. Am. Chem. Soc. 130, 6928 (2008).CrossRefGoogle Scholar
  7. 7.
    R. Filter, K. Slowik, J. Straubel, F. Lederer, and C. Rockstuhl, Opt. Lett. 39, 1246 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    C. Ma and Z. Liu, J. Nanophoton. 5, 051604 (2011).CrossRefGoogle Scholar
  9. 9.
    Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    R. M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, Nat. Nanotech. 9, 600 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    Z. Hu, J. C. Yu, T. Ming, and J. Wang, Appl. Catal. B: Environ. 168, 483 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Schietinger, M. Barth, T. Aichele, and O. Benson, Nano Lett. 9, 1694 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, J. Phys. Chem. B 109, 1088 (2005).CrossRefGoogle Scholar
  14. 14.
    J. J. Wessel, Opt. Soc. Am. B 2, 1538 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    O. Perez-Gonzalez, N. Zabala, and J. Aizpurua, Nanotechnology 25, 035201 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    J. Calderon, J. Alvarez, J. Martinez-Pastor, and D. Hill, Plasmonics 10, 703 (2015).CrossRefGoogle Scholar
  17. 17.
    C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. M. de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, Nano Lett. 13, 1516 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, Nat. Photon. 8, 835 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovskii, and Yu. S. Kivshar, Phys. Usp. 56, 539 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, Chem. Rev. 111, 3888 (2011).CrossRefGoogle Scholar
  21. 21.
    Z. Wu and Y. Zheng, Plasmonics 11, 213 (2016).CrossRefGoogle Scholar
  22. 22.
    S. P. Eliseev, A. G. Vitukhnovsky, D. A. Chubich, N. S. Kurochkin, V. V. Sychev, and A. A. Marchenko, JETP Lett. 103, 82 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. Bin Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, Nano Lett. 13, 3482 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2010; Pan Stanford, Singapore, 2011).Google Scholar
  25. 25.
    J. E. Millstone, S. J. Hurst, G. S. Metraux, J. I. Cutler, and C. A. Mirkin, Small 5, 646 (2009).CrossRefGoogle Scholar
  26. 26.
    V. Klimov, G. Y. Guo, and M. Pikhota, J. Phys. Chem. C 118, 13052 (2014).CrossRefGoogle Scholar
  27. 27.
    K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, ACS Photon. 2, 326 (2015).CrossRefGoogle Scholar
  28. 28.
    R. Boidin, T. Halenkovic, V. Nazabal, L. Benes, and P. Nemec, Ceram. Int. 42, 1177 (2016).CrossRefGoogle Scholar
  29. 29.
    T. B. Hoang and M. H. Mikkelsen, Appl. Phys. Lett. 108, 183107 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • S. P. Eliseev
    • 1
  • N. S. Kurochkin
    • 1
    • 2
  • S. S. Vergeles
    • 1
    • 3
  • V. V. Sychev
    • 1
    • 2
  • D. A. Chubich
    • 1
  • P. Argyrakis
    • 4
  • D. A. Kolymagin
    • 1
  • A. G. Vitukhnovskii
    • 1
    • 2
    • 5
  1. 1.Moscow Institute of Physics and Technology (State University)DolgoprudnyiMoscow regionRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of Sciences, ChernogolovkaMoscow regionRussia
  4. 4.Aristotle University of ThessalonikiThessalonikiGreece
  5. 5.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations