JETP Letters

, Volume 105, Issue 7, pp 458–463 | Cite as

Dynamics of quantum vortices in a quasi-two-dimensional Bose–Einstein condensate with two “holes”

Methods of Theoretical Physics

Abstract

The dynamics of interacting quantum vortices in a quasi-two-dimensional spatially inhomogeneous Bose–Einstein condensate, whose equilibrium density vanishes at two points of the plane with a possible presence of an immobile vortex with a few circulation quanta at each point, has been considered in a hydrodynamic approximation. A special class of density profiles has been chosen, so that it proves possible to calculate analytically the velocity field produced by point vortices. The equations of motion have been given in a noncanonical Hamiltonian form. The theory has been generalized to the case where the condensate forms a curved quasi-two-dimensional shell in the three-dimensional space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Svidzinsky and A. L. Fetter, Phys. Rev. A 62, 063617 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    A. L. Fetter and A. A. Svidzinsky, J. Phys.: Condens. Matter 13, R135 (2001).ADSGoogle Scholar
  3. 3.
    J. R. Anglin, Phys. Rev. A 65, 063611 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    D. E. Sheehy and L. Radzihovsky, Phys. Rev. A 70, 063620 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    B. Y. Rubinstein and L. M. Pismen, Physica D 78, 1 (1994).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V. P. Ruban, Phys. Rev. E 64, 036305 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    V. P. Ruban, J. Exp. Theor. Phys. 124 (2017, in press), arXiv:1612.00165 [cond-mat.quant-gas].Google Scholar
  9. 9.
    K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. A 66, 053606 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, Phys. Rev. Lett. 95, 143201 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    H. Fu and E. Zaremba, Phys. Rev. A 73, 013614 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    C. Ryu, M. F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, and W. D. Phillips, Phys. Rev. Lett. 99, 260401 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill III, C. J. Lobb, K. Helmerson, W. D. Phillips, and G. K. Campbell, Phys. Rev. Lett. 106, 130401 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    S. Moulder, S. Beattie, R. P. Smith, N. Tammuz, and Z. Hadzibabic, Phys. Rev. A 86, 013629 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    O. Zobay and B. M. Garraway, Phys. Rev. Lett. 86, 1195 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    O. Zobay and B. M. Garraway, Phys. Rev. A 69, 023605 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    T. Fernholz, R. Gerritsma, P. Krüger, and R. J. C. Spreeuw, Phys. Rev. A 75, 063406 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    B. E. Sherlock, M. Gildemeister, E. Owen, E. Nugent, and C. J. Foot, Phys. Rev. A 83, 043408 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    D. G. Dritschel and S. Boatto, Proc. R. Soc. A 471, 20140890 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    P. K. Newton, Theor. Comput. Fluid Dyn. 24, 137 (2010).CrossRefGoogle Scholar
  21. 21.
    R. B. Nelson and N. R. McDonald, Theor. Comput. Fluid Dyn. 24, 157 (2010).CrossRefGoogle Scholar
  22. 22.
    Y. Kimura, Proc._R. Soc. A 455, 245 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    A. Surana and D. Crowdy, J. Comput. Phys. 277, 6058 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    A. M. Turner, V. Vitelli, and D. R. Nelson, Rev. Mod. Phys. 82, 1301 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations