Advertisement

JETP Letters

, Volume 105, Issue 5, pp 303–306 | Cite as

Chiral vortical effect generated by chiral anomaly in vortex-skyrmions

  • G. E. Volovik
Condensed Matter
  • 61 Downloads

Abstract

We discuss the type of the general macroscopic parity-violating effects, when there is the current along the vortex, which is concentrated in the vortex core. We consider vortices in chiral superfluids with Weyl points. In the vortex core, the positions of the Weyl points form the skyrmion structure. We show that the mass current concentrated in such a core is provided by the spectral flow through the Weyl points according to the Adler–Bell–Jackiw equation for chiral anomaly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sh. Jia, S.-Y. Xu, and M. Z. Hasan, Nat. Mater. 15, 1140 (2016); arXiv:1612.00416.ADSCrossRefGoogle Scholar
  2. 2.
    M. Sato and Y. Ando, arXiv:1608.03395.Google Scholar
  3. 3.
    D. A. Pesin, in Proceedings of the International Conference on Mathematical Methods in Electromagnetic Theory, Lviv, Ukraine, July 5–7, 2016, p.115.Google Scholar
  4. 4.
    J. Ma and D. A. Pesin, Phys. Rev. B 92, 235205 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    A. Vilenkin, Phys. Rev. D 20, 1807 (1979).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Vilenkin, Phys. Rev. D 22, 3080 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Prog. Part. Nucl. Phys. 88, 1 (2016); arXiv:1511.04050.ADSCrossRefGoogle Scholar
  8. 8.
    M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    G. E. Volovik, JETP Lett. 61, 958 (1995).ADSGoogle Scholar
  10. 10.
    Y. Tada, W. Nie, and M. Oshikawa, Phys. Rev. Lett. 114, 195301 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    G. E. Volovik, JETP Lett. 100, 742 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    G. E. Volovik, JETP Lett. 105, 34 (2017); arXiv:1611.06803.CrossRefGoogle Scholar
  13. 13.
    S. Adler, Phys. Rev. 177, 2426 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    S. L. Adler, in Fifty Years of Yang–Mills Theory, Ed. by G.’ t Hooft (World Scientific, Singapore, 2005), p.187.Google Scholar
  15. 15.
    J. S. Bell and R. Jackiw, Nuovo Cim. A 60, 47 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    G. E. Volovik, JETP Lett. 105 (4) (2017, in press); arXiv:1701.01075.Google Scholar
  17. 17.
    I. Kezsmarki, S. Bordacs, P. Milde, E. Neuber, L.M. Eng, J. S. White, H. M. R’nnow, C. D. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, and A. Loid, Nat. Mater. 14, 1116 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    D. I. Pikulin, A. Chen, and M. Franz, Phys. Rev. X 6, 041021 (2016).Google Scholar
  19. 19.
    M. C. Cross, J. Low Temp. Phys. 21, 525 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    N. Yamamoto, Phys. Rev. D 92, 085011 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Chen, S. Wu, and A. A. Burkov, Phys. Rev. B 88, 125105 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    M. A. Zubkov, Phys. Rev. D 93, 105036 (2016).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    L. S. Levitov, Yu. V. Nazarov, and G. M. Eliashberg, JETP Lett. 41, 445 (1985).ADSGoogle Scholar
  24. 24.
    Yu. V. Nazarov, Sov. Phys. JETP 64, 193 (1986).Google Scholar
  25. 25.
    T. E. O’Brien, C. W. J. Beenakker, and I. Adagideli, arXiv:1612.06848.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Low Temperature Laboratory, Aalto UniversitySchool of Science and TechnologyAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations