JETP Letters

, Volume 105, Issue 5, pp 279–282 | Cite as

Performance investigation of suppression of four wave mixing using optical phase conjugation with different modulation format in DWDM soliton communication system

Optics and Laser Physics
  • 29 Downloads

Abstract

The performance of dense wavelength division multiplexed (DWDM) soliton transmission system for returnto-zero (RZ) and non-return-to-zero (NRZ) modulation formats have been investigated. The main aim of this paper is to estimate and mitigate the four wave mixing (FWM) power by using in-line optical phase conjugator (OPC). The effect of FWM has been estimated using real fiber link having nonlinear and attenuation losses. The FWM power is strongly suppressed by introducing destructive interference between the first and second halves of in-line OPC. It has been indicated that RZ with OPC yields the better performance with FWM power suppression (more than 20 dBm in certain cases) with reasonable bit error rate and Q-factor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, New York, 2010).CrossRefGoogle Scholar
  2. 2.
    J. M. Senior, Optical Fibre Communications (Prentice Hall, Hertfordshire, UK, 1992).Google Scholar
  3. 3.
    R. J. Essiambre and G. P. Agrawal, J. Opt. Soc. Am. B 14, 323 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    S. P. Singh, N. Singh, and R. Gangwar, Prog. Electromagn. Res. 74, 157 (2007).CrossRefGoogle Scholar
  5. 5.
    A. Selvamani and M. T. Sabapathi, in Proceedings of the International Conference on Recent Advancements in Electrical, Electronics and Control Engineering, India, Dec. 15–17, 2011.Google Scholar
  6. 6.
    J. D. Downie and M. Sharma, in Proceedings of the International Conference on Optical Fiber Communication, Los Angeles, CA, USA, March 6–10, 2011 (IEEE, 2011), p. JThA6.Google Scholar
  7. 7.
    L. Sharan and V. K. Chaubey, in Proceedings of the International IEEE Photonics Conference, Burlingame, CA, USA, Sept. 23–27, 2012, p.210.Google Scholar
  8. 8.
    J. S. Malhotra, M. Kumar, and A. K. Sharma, Optic 124, 3029 (2013).ADSGoogle Scholar
  9. 9.
    N. Bouabdallah and H. Perros, Comput. Networks 51, 3878 (2007).CrossRefGoogle Scholar
  10. 10.
    A. E. Willner and S. M. Hwant, IEEE J. Lightwave Technol. 13, 802 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    X. Liang, S. Kumar, and J. Shao, Opt. Express 21, 28668 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    G. P. Agrawal, Applications on Nonlinear Fiber Optics (Academic, San Diego, 2001).Google Scholar
  13. 13.
    V. N. Serkin and A. Hasegawa, Phys. Rev. Lett. 85, 4502 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    D. Bhalla and M. Bhutani, Int. J. Comp. Appl. 97 (3), 9 (2014).Google Scholar
  15. 15.
    G. Kaur and M. S. Patterh, Optik 125, 3781 (2014).CrossRefGoogle Scholar
  16. 16.
    G. Kaur and M. S. Patterh, Optik 126, 347 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    P. Singh and N. S. Grewal, Int. J. Sci. Eng. Res. 3, 7 (2012).Google Scholar
  18. 18.
    S. Singh, Optik 125, 6527 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    S. Singh and R. S. Kaler, Optik 125, 5357 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Optical Fiber Communication Research Laboratory (OFCR Lab), ECE DepartmentThapar University, PatialaPunjabIndia
  2. 2.Department of Electronics and Communication EngineeringPunjabi University, PatialaPunjabIndia

Personalised recommendations