JETP Letters

, Volume 105, Issue 4, pp 246–249 | Cite as

Fluctuation shift of the nematic–isotropic phase transition temperature

  • E. I. Kats
Condensed Matter


A macroscopic counterpart to the microscopic mechanism of the straightening dimer mesogens conformations, proposed recently by S.M. Saliti, M.G. Tamba, S.N. Sprunt, C. Welch, G.H. Mehl, A. Jakli, and J.T. Gleeson [Phys. Rev. Lett. 116, 217801 (2016)] to explain their experimental observation of the unprecedentedly large shift of the nematic–isotropic transition temperature is discussed. The proposed interpretation is based on singular longitudinal fluctuations of the nematic order parameter. Since these fluctuations are governed by the Goldstone director fluctuations, they exist only in the nematic state. External magnetic field suppresses the singular longitudinal fluctuations of the order parameter (similarly as is the case for the transverse director fluctuations, although with a different scaling over the magnetic field). The reduction of the fluctuations changes the equilibrium value of the magnitude of the order parameter in the nematic state. Therefore, it leads to additional (with respect to the mean field contribution) fluctuation shift of the nematic–isotropic transition temperature. Our mechanism works for any nematic liquid crystals, however the magnitude of the fluctuation shift increases with decrease in the Frank elastic moduli. Since some of these moduli supposed to be anomalously small for so-called bent-core or dimer nematic liquid crystals, just these liquid crystals are promising candidates for the observation of the predicted fluctuation shift of the phase transition temperature.


  1. 1.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Nauka, Moscow, 1995; Pergamon, New York, 1980).Google Scholar
  2. 2.
    P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 2000).Google Scholar
  3. 3.
    M. A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, Philadelphia, 1991).Google Scholar
  4. 4.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).Google Scholar
  5. 5.
    W. Helfrich, Phys. Rev. Lett. 24, 201 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    L. E. Hough, M. Spannuth, M. Nakata, D. A. Coleman, C. D. Jones, G. Dantlgraber, C. Tschierske, J. Watanabe, E. Körblova, D. M. Walba, J. E. Maclennan, M. A. Glaser, and N. A. Clark, Science 325, 452 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    V. P. Panov, M. Nagaraj, J. K. Vij, A. Kohlmeier, M.-G. Tamba, R. A. Lewis, and G. H. Mehl, Phys. Rev. Lett. 105, 167801 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    M. Cestari, S. Diez-Berart, D. A. Dunmur, A. Ferrarini, M. R. de la Fuente, D. J. B. Jackson, D. O. Lopez, G. R. Luckhurst, M. A. Perez-Jubindo, R. M. Richardson, J. Salud, B. A. Timimi, and H. Zimmermann, Phys. Rev. E 84, 031704 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jakli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, Nat. Commun. 4, 2635 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    E. I. Kats and V. V. Lebedev, JETP Lett. 100, 118 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    J. Mandle, E. J. Davis, S. A. Lobato, C.-C. A. Vol, S. J. Cowlinga, and J. W. Goodbya, Phys. Chem. Chem. Phys. 16, 6907 (2014).CrossRefGoogle Scholar
  12. 12.
    M. A. Osipov and G. Pajak, Eur. Phys. J. E 39, 45 (2016).CrossRefGoogle Scholar
  13. 13.
    L. Longa and G. Pajak, Phys. Rev. E 93, 040701 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    N. Vaupotic, S. Curk, M. A. Osipov, M. Cepic, H. Takezoe, and E. Gorecka, Phys. Rev. E 93, 022704 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    A. G. Vanakaras and D. J. Photinos, Soft Matter 12, 2208 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    C. Meyer and I. Dozov, Soft Matter 12, 574 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    S. M. Saliti, M. G. Tamba, S. N. Sprunt, C. Welch, G. H. Mehl, A. Jakli, and J. T. Gleeson, Phys. Rev. Lett. 116, 217801 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    T. Ostapenko, D. B. Wiant, S. N. Sprunt, A. Jakli, and J. T. Glisson, Phys. Rev. Lett. 101, 247801 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    O. Francescangeli, F. Vita, F. Fauth, and E. T. Samulski, Phys. Rev. Lett. 107, 207801 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    T. B. T. To, T. J. Sluckin, and G. R. Luckhurst, Phys. Rev. E 88, 062506 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    V. L. Pokrovskii and E. I. Kats, Sov. Phys. JETP 46, 405 (1977).ADSGoogle Scholar
  22. 22.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Pergamon, New York, 1979).Google Scholar
  23. 23.
    M. E. Fisher, N. B. Barber, and D. Jasnow, Phys. Rev. A 8, 1111 (1973).ADSCrossRefGoogle Scholar
  24. 24.
    V. L. Golo, E. I. Kats, A. A. Sevenyuk, and D. O. Sinitsyn, Phys. Rev. E 88, 042504 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    V. N. Blinov, V. L. Golo, and E. I. Kats, Eur. Phys. J. E 38, 80 (2015).CrossRefGoogle Scholar
  26. 26.
    I. Dozov, Europhys. Lett. 56, 247 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    D. Chen, J. H. Porada, J. B. Hooper, A. Klittnick, Y. Shen, M. R. Tuchband, E. Korblova, D. Bedrov, D. M. Walba, M. A. Glaser, J. E. Maclennan, and N. A. Clark, Proc. Natl. Acad. Sci. 110, 15931 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    E. Gorecka, N. Vaupotic, A. Zep, D. Pociecha, J. Yoshioka, J. Yamamoto, and H. Takezoe, Angew. Chem. Int. Ed. Engl. 54, 10155 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations