Skip to main content
Log in

Magnetic-field control of subradiance states of a system of two atoms

  • Quantum Informatics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A method is proposed for the creation of an entangled metastable (subradiance) excited state in a system of two closely spaced identical atoms. The system of unexcited atoms is first placed in a magnetic field that is directed at a magic angle of \({\alpha _0} = {\text{arccos}}\left( {1/\sqrt 3 } \right) \approx 54.7^\circ \) to the line connecting the atoms and has a transverse gradient. The gradient of the field results in the detuning of frequencies of an optical transition of the atoms. Then, the resonant laser excitation of an atom with a higher transition frequency is performed with the subsequent adiabatic switching-off of the gradient of the magnetic field. It is shown that the excited atomic system in this case transits with overwhelming probability to an entangled subradiance state. Requirements on the spectroscopic parameters of the transitions and on the rate of varying the gradient of the magnetic field necessary for the implementation of this effect are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  Google Scholar 

  2. I. V. Bagratin, B. A. Grishanin, and V. N. Zadkov, Phys. Usp. 44, 597 (2001).

    Article  ADS  Google Scholar 

  3. Z. Ficek and R. Tanaś, Phys. Rep. 372, 369 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  4. R. H. Lehmberg, Phys. Rev. A 2, 889 (1970).

    Article  ADS  Google Scholar 

  5. P. W. Milloni and P. L. Knight, Phys. Rev. A 10, 1096 (1974).

    Article  ADS  Google Scholar 

  6. D.-W. Wang, Z.-H. Li, H. Zheng, and S.-Y. Zhu, Phys. Rev. A 81, 043819 (2010).

    Article  ADS  Google Scholar 

  7. A. A. Makarov and V. S. Letokhov, J. Exp. Theor. Phys. 97, 688 (2003).

    Article  ADS  Google Scholar 

  8. E. S. Redchenko and V. I. Yudson, Phys. Rev. A 90, 063829 (2014).

    Article  ADS  Google Scholar 

  9. I. V. Bagratin, B. A. Grishanin, and V. N. Zadkov, Fortschr. Phys. 48, 637 (2000).

    Article  Google Scholar 

  10. M. O. Scully, Phys. Rev. Lett. 115, 243602 (2015).

    Article  ADS  Google Scholar 

  11. D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S. Liberman, Phys. Rev. Lett. 54, 1917 (1985).

    Article  ADS  Google Scholar 

  12. R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett. 76, 2049 (1996).

    Article  ADS  Google Scholar 

  13. W. Guerin, M. O. Araújo, and R. Kaiser, Phys. Rev. Lett. 116, 083601 (2016).

    Article  ADS  Google Scholar 

  14. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 1963, p. 119; Pergamon, Oxford, 1965, p. 91).

    Google Scholar 

  15. A. A. Makarov, Phys. Rev. A 92, 053840 (2015).

    Article  ADS  Google Scholar 

  16. P. Horwitz, Appl. Phys. Lett. 26, 306 (1975).

    Article  ADS  Google Scholar 

  17. N. D. Scielzo, J. R. Guest, E. C. Schulte, I. Ahmad, K. Bailey, D. L. Bowers, R. J. Holt, Z.-T. Lu, T. P. O’Connor, and D. H. Potterveld, Phys. Rev. A 73, 010501 (2006).

    Article  ADS  Google Scholar 

  18. H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar, Nat. Nanotechnol. 2, 301 (2007).

    Article  ADS  Google Scholar 

  19. S. Nascimbene, N. Goldman, N. R. Cooper, and J. Dalibard, Phys. Rev. Lett. 115, 140401 (2015).

    Article  ADS  Google Scholar 

  20. B. Dubetsky and P. R. Berman, Phys. Rev. A 66, 045402 (2002).

    Article  ADS  Google Scholar 

  21. D. N. Yanyshev, V. I. Balykin, Y. V. Vladimirova, and V. N. Zadkov, Phys. Rev. A 87, 033411 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Makarov.

Additional information

Original Russian Text © A.A. Makarov, V.I. Yudson, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 3, pp. 193–197.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, A.A., Yudson, V.I. Magnetic-field control of subradiance states of a system of two atoms. Jetp Lett. 105, 205–209 (2017). https://doi.org/10.1134/S0021364017030109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017030109

Navigation