Advertisement

JETP Letters

, Volume 105, Issue 2, pp 98–102 | Cite as

Visualization of the magnetic flux structure in phosphorus-doped EuFe2As2 single crystals

  • I. S. Veshchunov
  • L. Ya. Vinnikov
  • V. S. Stolyarov
  • N. Zhou
  • Z. X. Shi
  • X. F. Xu
  • S. Yu. Grebenchuk
  • D. S. Baranov
  • I. A. Golovchanskiy
  • S. Pyon
  • Yue Sun
  • Wenhe Jiao
  • Guanghan Cao
  • T. Tamegai
  • A. A. Golubov
Condensed Matter

Abstract

Magnetic flux structure on the surface of EuFe2(As1-x P x )2 single crystals with nearly optimal phosphorus doping levels x = 0.20 and x = 0.21 is studied by low-temperature magnetic force microscopy and decoration with ferromagnetic nanoparticles. The studies are performed in a broad temperature range. It is shown that the single crystal with x = 0.21 in the temperature range between the critical temperatures T SC= 22 K and T C = (18 ± 0.3) K of the superconducting and ferromagnetic phase transitions, respectively, has the vortex structure of a frozen magnetic flux, typical for type-II superconductors. The magnetic domain structure is observed in the superconducting state below T C. The nature of this structure is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Huxley, Physica C 514, 368 (2015)ADSCrossRefGoogle Scholar
  2. 1a.
    C. T. Wolowiec, B. D. White, and M. B. Maple, Physica C 514, 113 (2015).ADSCrossRefGoogle Scholar
  3. 2.
    L. C. Gupta, Adv. Phys. 55, 691 (2006).ADSCrossRefGoogle Scholar
  4. 3.
    N. T. Huy, A. Gasparini, D. E. de Nijs, Y. Huang, J. C. P. Klaasse, T. Gortenmulder, A. de Visser, A. Hamann, T. Görlach, and H. V. Löhneysen, Phys. Rev. Lett. 99, 067006 (2007)ADSCrossRefGoogle Scholar
  5. 3a.
    D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E. Lhotel, and C. Paulsen, Nature (London) 413, 613 (2001)ADSCrossRefGoogle Scholar
  6. 3b.
    D. J. Hykel, C. Paulsen, D. Aoki, J. R. Kirtley, and K. Hasselbach, Phys. Rev. B 90, 184501 (2014).ADSCrossRefGoogle Scholar
  7. 4.
    A. N. Lavrov, L. P. Kozeeva, M. R. Trunin, and V. N. Zverev, Phys. Rev. B 79, 214523 (2009).ADSCrossRefGoogle Scholar
  8. 5.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
  9. 6.
    T. K. Ng and C. M. Varma, Phys. Rev. Lett. 78, 330 (1997)ADSCrossRefGoogle Scholar
  10. 6a.
    E. I. Blount and C. M. Varma, Phys. Rev. Lett. 42, 1079 (1979).ADSCrossRefGoogle Scholar
  11. 7.
    M. Fauré and A. I. Buzdin, Phys. Rev. Lett. 94, 187202 (2005)ADSCrossRefGoogle Scholar
  12. 7a.
    I. M. Khaymovich, A. S. Mel’nikov, and A. I. Buzdin, Phys. Rev. B 89, 094524 (2014).ADSCrossRefGoogle Scholar
  13. 8.
    M. Iavarone, A. Scarfato, F. Bobba, M. Longobardi, G. Karapetrov, V. Novosad, V. Yefremenko, F. Giubileo, and A. M. Cucolo, Phys. Rev. B 84, 024506 (2011)ADSCrossRefGoogle Scholar
  14. 8a.
    F. Bobba, C. di Giorgio, A. Scarfato, et al., Phys. Rev. B 89, 214502 (2014).ADSCrossRefGoogle Scholar
  15. 9.
    D. Wulferding, I. Yang, J. Yang, M. Lee, H. C. Choi, S. L. Bud’ko, P. C. Canfield, H. W. Yeom, and J. Kim, Phys. Rev. B 92, 014517 (2015).ADSCrossRefGoogle Scholar
  16. 10.
    L. Ya. Vinnikov, I. V. Grigor’eva, and L. A. Gurevich, Springer Ser. Mater. Sci. 23 (1993).Google Scholar
  17. 11.
    Z. Ren, Q. Tao, S. Jiang, C. M. Feng, C. Wang, J. H. Dai, G. H. Cao, and Z.-A. Xu, Phys. Rev. Lett. 102, 137002 (2009).ADSCrossRefGoogle Scholar
  18. 12.
    H. S. Jeevan, D. Kasinathan, H. Rosner, and P. Gegenwart, Phys. Rev. B 83, 054511 (2011)ADSCrossRefGoogle Scholar
  19. 12a.
    S. Nandi, W. T. Jin, Y. Xiao, Y. Su, S. Price, D. K. Shukla, J. Strempfer, H. S. Jeevan, P. Gegenwart, and Th. Bruckel, Phys. Rev. B 89, 014512 (2014).ADSCrossRefGoogle Scholar
  20. 13.
    T. Adachi, Y. Nakamatsu, T. Kobayashi, S. Miyasaka, S. Tajima, M. Ichimiya, M. Ashida, H. Sagayama, H. Nakao, R. Kumai, and Y. Murakami, J. Phys. Soc. Jpn. 85, 063705 (2016).ADSCrossRefGoogle Scholar
  21. 14.
    I. S. Veschunov, L. Ya. Vinnikov, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 76, 174506 (2007).ADSCrossRefGoogle Scholar
  22. 15.
    X. Xu, W. H. Jiao, N. Zhou, Y. K. Li, B. Chen, C. Cao, J. Dai, A. F. Bangura, and G. H. Cao, Phys. Rev. B 89, 104517 (2014).ADSCrossRefGoogle Scholar
  23. 16.
    I. S. Veshchunov, V. A. Oboznov, A. N. Rossolenko, A. S. Prokofiev, L. Ya. Vinnikov, A. Yu. Rusanov, and D. V. Matveev, JETP Lett. 88, 758 (2008).ADSCrossRefGoogle Scholar
  24. 17.
    T. Sakurai and Y. Shimada, Jpn. J. Appl. Phys. 31 (6A), 1905 (1992).ADSCrossRefGoogle Scholar
  25. 18.
    L. Ya. Vinnikov, T. L. Barkov, P. C. Canfield, S. L. Bud’ko, J. E. Ostenson, F. D. Laabs, and V. G. Kogan, Phys. Rev. B 64, 220508(R) (2001).Google Scholar
  26. 19.
    A. Volodin, K. Temst, C. Van Haesendonck, Y. Bruynseraede, M. I. Montero, and I. K. Schuller, Europhys. Lett. 58, 582 (2002).ADSCrossRefGoogle Scholar
  27. 20.
    A. Hubert and R. Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures (Springer, Berlin, Heidelberg, New York, 1998)Google Scholar
  28. 20a.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, Oxford, 1984).Google Scholar
  29. 21.
    A. O. Golubok and L. Ya. Vinnikov, JETP Lett. 35, 642 (1982).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • I. S. Veshchunov
    • 1
    • 2
  • L. Ya. Vinnikov
    • 3
  • V. S. Stolyarov
    • 1
    • 2
  • N. Zhou
    • 4
  • Z. X. Shi
    • 4
  • X. F. Xu
    • 5
  • S. Yu. Grebenchuk
    • 1
  • D. S. Baranov
    • 1
    • 2
    • 6
  • I. A. Golovchanskiy
    • 1
    • 7
  • S. Pyon
    • 2
  • Yue Sun
    • 2
    • 8
  • Wenhe Jiao
    • 9
  • Guanghan Cao
    • 9
  • T. Tamegai
    • 2
  • A. A. Golubov
    • 1
    • 10
  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  2. 2.Institute for Solid State PhysicsThe University of TokyoKashiwaJapan
  3. 3.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  4. 4.Department of Physics and Key Laboratory of MEMS of the Ministry of EducationSoutheast UniversityNanjingChina
  5. 5.Department of PhysicsChangshu Institute of TechnologyChangshuPeople’s Republic of China
  6. 6.Laboratoire de physique et d’etude des materiauxLPEM-UMR8213/CNRS-ESPCI ParisTech-UPMCParisFrance
  7. 7.National University of Science and Technology MISISMoscowRussia
  8. 8.Department of Applied PhysicsThe University of TokyoTokyoJapan
  9. 9.Department of PhysicsZhejiang UniversityHangzhouChina
  10. 10.Faculty of Science and Technology and MESA+ Institute of NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations