Advertisement

JETP Letters

, Volume 105, Issue 2, pp 83–88 | Cite as

Isotropization of two-dimensional hydrodynamic turbulence in the direct cascade

Plasma, Hydro- and Gas Dynamics
  • 35 Downloads

Abstract

We present results of numerical simulation of the direct cascade in two-dimensional hydrodynamic turbulence (with spatial resolution up to ). If at the earlier stage (at the time of order of the inverse pumping growth rate τ-Γmax −1), the turbulence develops according to the same scenario as in the case of a freely decaying turbulence [1, 2]: quasi-singular distribution of di-vorticity are formed, which in k-space correspond to jets, leading to a strong turbulence anisotropy, then for times of the order of 10τ turbulence becomes almost isotropic. In particular, at these times any significant anisotropy in the angular fluctuations for the energy spectrum (for a fixed k) is not visible, while the probability distribution function of vorticity for large arguments has the exponential tail with the exponent linearly dependent on vorticity, in the agreement with the theoretical prediction [3].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Kuznetsov, V. Naulin, A. H. Nielsen, and J. J. Rasmussen, Phys. Fluids 19, 105110 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    A. N. Kudryavtsev, E. A. Kuznetsov, and E. V. Sereshchenko, JETP Lett. 96, 699 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    G. Falkovich and V. Lebedev, Phys. Rev. E 83, 045301(R) (2011).Google Scholar
  4. 4.
    R. Kraichnan, Phys. Fluids 11, 1417 (1967).ADSCrossRefGoogle Scholar
  5. 5.
    G. Boffetta and R. E. Ecke, Ann. Rev. Fluid Mech. 44, 427 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    D. K. Lilly, J. Fluid Mech. 45, 395 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    P. G. Saffman, Stud. Appl. Math. 50, 49 (1971).Google Scholar
  8. 8.
    B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl. 18, 115 (1973).ADSGoogle Scholar
  9. 9.
    E. A. Kuznetsov, JETP Lett. 80, 83 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    E. A. Kuznetsov, V. Naulin, A. H. Nielsen, and J. J. Rasmussen, Theor. Comput. Fluid Dyn. 24, 253 (2010).CrossRefGoogle Scholar
  11. 11.
    W. Wolibner, Math. Z. 37, 698 (1933)MathSciNetCrossRefGoogle Scholar
  12. 11a.
    V. I. Yudovich, Zh. Vychisl. Mat. Mat. Fiz. 3, 1407 (1963)Google Scholar
  13. 11b.
    T. Kato, Arch. Rat. Mech. Anal. 25, 189 (1967).CrossRefGoogle Scholar
  14. 12.
    M. E. Brachet, M. Meneguzzi, and P. L. Sulem, J. Fluid Mech. 194, 333 (1988).ADSCrossRefGoogle Scholar
  15. 13.
    J. Weiss, Physica D 48, 273 (1991).ADSMathSciNetCrossRefGoogle Scholar
  16. 14.
    E. A. Kuznetsov and E. V. Sereshchenko, JETP Lett. 102, 760 (2015).ADSCrossRefGoogle Scholar
  17. 15.
    T. Gotoh, Phys. Rev. E 57, 298491 (1998).CrossRefGoogle Scholar
  18. 16.
    N. Schorghofer, Phys. Rev. E 61, 657277 (2000).Google Scholar
  19. 17.
    E. Lindborg and K. Alvelius, Phys. Fluids 12, 945 (2000).ADSCrossRefGoogle Scholar
  20. 18.
    E. Lindborg and A. Vallgren, Phys. Fluids 22, 091 (2010).CrossRefGoogle Scholar
  21. 19.
    G. Falkovich and V. Lebedev, Phys. Rev E 50, 3883 (1994).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Far Eastern Federal UniversityVladivostokRussia
  5. 5.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations