Advertisement

JETP Letters

, Volume 105, Issue 2, pp 69–73 | Cite as

NSVZ-like scheme for the photino mass in softly broken N = 1 SQED regularized by higher derivatives

  • I. V. Nartsev
  • K. V. StepanyantzEmail author
Fields, Particles, and Nuclei

Abstract

In the case of using the higher derivative regularization, we construct the subtraction scheme that gives the NSVZ-like relation for the anomalous dimension of the photino mass in softly broken N = 1 SQED with N f flavors in all loops. The corresponding renormalization prescription is determined by simple boundary conditions imposed on the renormalization constants. It allows fixing an arbitrariness of choosing finite counterterms in every order of the perturbation theory in such a way that the renormalization group functions defined in terms of the renormalized coupling constant satisfy the NSVZ-like relation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 229, 381 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    D. R. T. Jones, Phys. Lett. B 123, 45 (1983).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Phys. Lett. B 166, 329 (1986), Sov. J. Nucl. Phys. 43, 294 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Shifman and A. I. Vainshtein, Nucl. Phys. B 277, 456 (1986), Sov. Phys. JETP 64, 428 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    M. A. Shifman, ITEP Lectures on Particle Physics and Field Theory (World Scientific, Singapore, 2010); hepth/9902018.zbMATHGoogle Scholar
  6. 6.
    I. L. Buchbinder and K. V. Stepanyantz, Nucl. Phys. B 883, 20 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    I. L. Buchbinder, N. G. Pletnev, and K. V. Stepanyantz, Phys. Lett. B 751, 434 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    A. I. Vainshtein, V. I. Zakharov, and M. A. Shifman, JETP Lett. 42, 224 (1985).ADSGoogle Scholar
  9. 9.
    M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Phys. Lett. B 166, 334 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    J. Hisano and M. A. Shifman, Phys. Rev. D 56, 5475 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    I. Jack and D. R. T. Jones, Phys. Lett. B 415, 383 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    L. V. Avdeev, D. I. Kazakov, and I. N. Kondrashuk, Nucl. Phys. B 510, 289 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    L. Girardello and M. T. Grisaru, Nucl. Phys. B 194, 65 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    J. A. Helayel-Neto, Phys. Lett. B 135, 78 (1984).ADSCrossRefGoogle Scholar
  15. 15.
    F. Feruglio, J. A. Helayel-Neto, and F. Legovini, Nucl. Phys. B 249, 533 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    M. Scholl, Z. Phys. C 28, 545 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Yamada, Phys. Rev. D 50, 3537 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    A. A. Slavnov, Nucl. Phys. B 31, 301 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    A. A. Slavnov, Theor. Math. Phys. 13, 1064 (1972).CrossRefGoogle Scholar
  20. 20.
    V. K. Krivoshchekov, Theor. Math. Phys. 36, 745 (1978).MathSciNetCrossRefGoogle Scholar
  21. 21.
    P. C. West, Nucl. Phys. B 268, 113 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    A. A. Slavnov, Theor. Math. Phys. 33, 977 (1977).CrossRefGoogle Scholar
  23. 23.
    L. D. Faddeev and A. A. Slavnov, Gauge Fields. Introduction to Quantum Theory (Nauka, Moscow, 1978, Front. Phys. 50, 1 (1980), Front. Phys. 83, 1 (1990)).Google Scholar
  24. 24.
    K. V. Stepanyantz, Nucl. Phys. B 852, 71 (2011).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    K. V. Stepanyantz, J. High Energy Phys. 1408, 096 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    A. L. Kataev and K. V. Stepanyantz, Nucl. Phys. B 875, 459 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    S. L. Adler, Phys. Rev. D 10, 3714 (1974).ADSCrossRefGoogle Scholar
  28. 28.
    M. Shifman and K. Stepanyantz, Phys. Rev. Lett. 114, 051601 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    M. Shifman and K. V. Stepanyantz, Phys. Rev. D 91, 105008 (2015).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    I. V. Nartsev and K. V. Stepanyantz, arXiv:1610.01280 [hep-th].Google Scholar
  31. 31.
    A. A. Soloshenko and K. V. Stepanyantz, Theor. Math. Phys. 140, 1264 (2004).CrossRefGoogle Scholar
  32. 32.
    A. V. Smilga and A. Vainshtein, Nucl. Phys. B 704, 445 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    W. Siegel, Phys. Lett. B 84, 193 (1979).ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    S. S. Aleshin, A. L. Kataev, and K. V. Stepanyantz, JETP Lett. 103, 77 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    S. S. Aleshin, I. O. Goriachuk, A. L. Kataev, and K. V. Stepanyantz, Phys. Lett. B 764, 222 (2017).ADSCrossRefGoogle Scholar
  36. 36.
    A. B. Pimenov, E. S. Shevtsova, and K. V. Stepanyantz, Phys. Lett. B 686, 293 (2010).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    K. V. Stepanyantz, Proc. Steklov Inst. Math. 272, 256 (2011).MathSciNetCrossRefGoogle Scholar
  38. 38.
    K. V. Stepanyantz, arXiv:1108.1491 [hep-th].Google Scholar
  39. 39.
    S. S. Aleshin, A. E. Kazantsev, M. B. Skoptsov, and K. V. Stepanyantz, J. High Energy Phys. 1605, 014 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    A. E. Kazantsev and K. V. Stepanyantz, JETP 120, 618 (2015).ADSCrossRefGoogle Scholar
  41. 41.
    D. Kutasov and A. Schwimmer, Nucl. Phys. B 702, 369 (2004).ADSCrossRefGoogle Scholar
  42. 42.
    A. L. Kataev and K. V. Stepanyantz, Phys. Lett. B 730, 184 (2014).ADSCrossRefGoogle Scholar
  43. 43.
    A. L. Kataev and K. V. Stepanyantz, Theor. Math. Phys. 181, 1531 (2014).CrossRefGoogle Scholar
  44. 44.
    I. Jack, D. R. T. Jones, and C. G. North, Phys. Lett. B 386, 138 (1996).ADSCrossRefGoogle Scholar
  45. 45.
    I. Jack, D. R. T. Jones, and C. G. North, Nucl. Phys. B 486, 479 (1997).ADSCrossRefGoogle Scholar
  46. 46.
    I. Jack, D. R. T. Jones, and A. Pickering, Phys. Lett. B 435, 61 (1998).ADSCrossRefGoogle Scholar
  47. 47.
    I. Jack, D. R. T. Jones, and A. Pickering, Phys. Lett. B 426, 73 (1998).ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    I. Jack, D. R. T. Jones, and A. Pickering, Phys. Lett. B 432, 114 (1998).ADSCrossRefGoogle Scholar
  49. 49.
    I. Jack and D. R. T. Jones, Phys. Lett. B 465, 148 (1999).ADSCrossRefGoogle Scholar
  50. 50.
    R. V. Harlander, D. R. T. Jones, P. Kant, L. Mihaila, and M. Steinhauser, J. High Energy Phys. 0612, 024 (2006).ADSCrossRefGoogle Scholar
  51. 51.
    L. Mihaila, Adv. High Energy Phys. 2013, 607807 (2013).MathSciNetCrossRefGoogle Scholar
  52. 52.
    K. V. Stepanyantz, Nucl. Phys. B 909, 316 (2016).ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1984; Intersci. Monogr. Phys. Astron. 3, 1 (1959)).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Department of Theoretical Physics, Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations