JETP Letters

, Volume 105, Issue 1, pp 34–37 | Cite as

On the chiral magnetic effect in Weyl superfluid 3He-A

Condensed Matter

Abstract

In the theory of the chiral anomaly in relativistic quantum field theories (RQFTs), some results depend on a regularization scheme at ultraviolet. In the chiral superfluid 3He-A, which contains two Weyl points and also experiences the effects of chiral anomaly, the “trans-Planckian” physics is known and the results can be obtained without regularization. We discuss this on example of the chiral magnetic effect (CME), which has been observed in 3He-A in the 1990s [1]. There are two forms of the contribution of the CME to the Chern–Simons term in free energy, perturbative and non-perturbative. The perturbative term comes from the fermions living in the vicinity of the Weyl point, where the fermions are “relativistic” and obey the Weyl equation. The non-perturbative term originates from the deep vacuum, being determined by the separation of the two Weyl points in momentum space. Both terms are obtained using the Adler–Bell–Jackiw equation for chiral anomaly, and both agree with the results of the microscopic calculations in the “trans-Planckian” region. Existence of the two nonequivalent forms of the Chern–Simons term demonstrates that the results obtained within the RQFT depend on the specific properties of the underlying quantum vacuum and may reflect different physical phenomena in the same vacuum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Krusius, T. Vachaspati, and G. E. Volovik, arXiv:cond-mat/9802005.Google Scholar
  2. 2.
    K. Landsteiner, E. Megias, and F. Pena-Benitez, Lect. Notes Phys. 871, 433 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    M. Stone and P. L. E S. Lopes, Phys. Rev. B 93, 174501 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).MATHGoogle Scholar
  5. 5.
    T. Mizushima, Ya. Tsutsumi, T. Kawakami, M. Sato, M. Ichioka, and K. Machida, J. Phys. Soc. Jpn. 85, 022001 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    S. Adler, Phys. Rev. 177, 2426 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    S. L. Adler, in Fifty Years of Yang–Mills Theory, Ed. by G. 't Hooft (World Scientific, Singapore, 2005), p.187.Google Scholar
  8. 8.
    J. S. Bell and R. Jackiw, Nuovo Cim. A 60, 47 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    T. D. C. Bevan, A. J. Manninen, J. B. Cook, J. R. Hook, H. E. Hall, T. Vachaspati, and G. E. Volovik, Nature 386, 689 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    V. M. H. Ruutu, J. Kopu, M. Krusius, Ü. Parts, B. Plaçais, E. V. Thuneberg, and Wen Xu, Czechoslov. J. Phys. 46 (Suppl. S1), 7 (1996).CrossRefGoogle Scholar
  11. 11.
    V. M. H. Ruutu, J. Kopu, M. Krusius, Ü. Parts, B. Plaçais, E. V. Thuneberg, and Wen Xu, Phys. Rev. Lett. 79, 5058 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    G. E. Volovik, Physica B 255, 86 (1998); condmat/9802091.ADSCrossRefGoogle Scholar
  13. 13.
    A. Vilenkin, Phys. Rev. D 20, 1807 (1979).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Vilenkin, Phys. Rev. D 22, 3080 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Prog. Part. Nucl. Phys. 88, 1 (2016); arXiv:1511.04050.ADSCrossRefGoogle Scholar
  16. 16.
    M. A. Zubkov, Phys. Rev. D 93, 105036 (2016).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    N. Yamamoto, Phys. Rev. D 92, 085011 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    G. E. Volovik, JETP Lett. 46, 98 (1987).ADSGoogle Scholar
  19. 19.
    G. E. Volovik, Lect. Notes Phys. 718, 31 (2007); condmat/0601372.ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    G. E. Volovik, J. Low Temp. Phys. 43, 57 (2017); arXiv:1606.08318.Google Scholar
  21. 21.
    M. C. Cross, J. Low Temp. Phys. 21, 525 (1975).ADSCrossRefGoogle Scholar
  22. 22.
    G. E. Volovik and V. P. Mineev, Sov. Phys. JETP 54, 524 (1981).Google Scholar
  23. 23.
    G. E. Volovik and V. P. Mineev, Sov. Phys. JETP 56, 579 (1982).Google Scholar
  24. 24.
    N. D. Mermin and T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Chen, S. Wu, and A. A. Burkov, Phys. Rev. B 88, 125105 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    M. Joyce and M. Shaposhnikov, Phys. Rev. Lett. 79, 1193 (1997).ADSCrossRefGoogle Scholar
  27. 27.
    M. Giovannini and E. M. Shaposhnikov, Phys. Rev. D 57, 2186 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Low Temperature Laboratory, Department of Applied PhysicsAalto UniversityAALTOFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations