Advertisement

JETP Letters

, Volume 104, Issue 12, pp 833–837 | Cite as

Peculiarities of the inverse Faraday effect induced in iron garnet films by femtosecond laser pulses

  • M. A. KozhaevEmail author
  • A. I. Chernov
  • I. V. Savochkin
  • A. N. Kuz’michev
  • A. K. Zvezdin
  • V. I. Belotelov
Optics and Laser Physics

Abstract

The inverse Faraday effect in iron garnet films subjected to femtosecond laser pulses is experimentally investigated. It is found that the magnitude of the observed effect depends nonlinearly on the energy of the optical pump pulses, which is in contradiction with the notion that the inverse Faraday effect is linear with respect to the pump energy. Thus, for pump pulses with a central wavelength of 650 nm and an energy density of 1 mJ/cm2, the deviation from a linear dependence is as large as 50%. Analysis of the experimental data demonstrates that the observed behavior is explained by the fact that the optically induced normal component of the magnetization is determined, apart from the field resulting from the inverse Faraday effect, by a decrease in the magnitude of the precessing magnetization under the influence of the femtosecond electromagnetic field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kirilyuk, A. V. Kimel, and Th. Rasing, Rev. Mod. Phys. 82, 2731 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Nat. Phys. 11, 453 (2015).CrossRefGoogle Scholar
  3. 3.
    A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, Nature 435, 655 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    T. Satoh, Yu. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, Nat. Photon. 6, 662 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    F. Hansteen, A. Kimel, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 73, 014421 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    A. H. M. Reid, A. V. Kimel, A. Kirilyuk, J. F. Gregg, and Th. Rasing, Phys. Rev. Lett. 105, 107402 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    M. Deb, M. Vomir, J.-L. Rehspringer, and J.-Y. Bigot, Appl. Phys. Lett. 107, 252404 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, Phys. Rev. Lett. 99, 047601 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    A. H. M. Reid, A. V. Kimel, A. Kirilyuk, J. F. Greeg, and Th. Rasing, Phys. Rev. B 81, 104404 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    R. V. Mikhaylovskiy, E. Hendry, and V. V. Kruglyak, Phys. Rev. B 86, 100405(R) (2012).Google Scholar
  11. 11.
    L. P. Pitaevskii, Sov. Phys. JETP 12, 1008 (1961).MathSciNetGoogle Scholar
  12. 12.
    P. S. Pershan, Phys. Rev. 130, 919 (1963).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, Phys. Rev. Lett. 15, 190 (1965).ADSCrossRefGoogle Scholar
  14. 14.
    J. Deschamps, M. Fitaire, and M. Lagoutte, Phys. Rev. Lett. 25, 001330 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Shpitalnik, and B. Arad, Phys. Rev. Lett. 78, 001707 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    M. J. Hurben and C. E. Patton, J. Magn. Magn. Mater. 163, 39 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, Phys. Rev. Lett. 85, 844 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    A. Stupakiewicz, A. Maziewski, I. Davidenko, and V. Zablotskii, Phys. Rev. B 64, 64405 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    F. Atoneche, A. M. Kalashnikova, A. V. Kimel, A. Stupakiewicz, A. Mazeiewski, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 81, 214440 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. Kirilyuk, and A. A. Kimel, arXiv:1609.05223.Google Scholar
  22. 22.
    V. I. Belotelov and A. K. Zvezdin, Phys. Rev. B 86, 155133 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    A. K. Zvezdin and V. A. Kotov, Magnetooptics of Thin Films (Nauka, Moscow, 1988), p. 17 [in Russian].Google Scholar
  24. 24.
    M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1964; Nauka, Moscow, 1973), rus. p.57.Google Scholar
  25. 25.
    E. Beaurepaire, G. M. Turner, S. M. Harrel, M. C. Beard, J.-Y. Bigot, and C. A. Schmuttenmaer, Appl. Phys. Lett. 84, 3465 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    E. Beaurepaire, M. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    A. I. Chernov, M. A. Kozhaev, P. M. Vetoshko, D. V. Dodonov, A. R. Prokopov, A. G. Shumilov, A. N. Shaposhnikov, V. N. Berzhanskii, A. K. Zvezdin, and V. I. Belotelov, Phys. Solid State 58, 1128 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    A. I. Chernov, M. A. Kozhaev, D. V. Dodonov, D. V. Dodonov, P. M. Vetoshko, A. K. Zvezdin, and V. I. Belov, Opt. Lett. (in press).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • M. A. Kozhaev
    • 1
    • 2
    Email author
  • A. I. Chernov
    • 1
    • 2
  • I. V. Savochkin
    • 3
  • A. N. Kuz’michev
    • 1
    • 4
  • A. K. Zvezdin
    • 1
    • 2
    • 4
  • V. I. Belotelov
    • 1
    • 3
  1. 1.Russian Quantum CenterMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia
  4. 4.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia

Personalised recommendations