Advertisement

JETP Letters

, Volume 104, Issue 12, pp 880–882 | Cite as

Graphite on graphite

  • G. E. Volovik
  • V. M. Pudalov
Miscellaneous
  • 73 Downloads

Abstract

We propose potential geometry for fabrication of the graphite sheets with atomically smooth edges. For such sheets with Bernal stacking, the electron–electron interaction and topology should cause sufficiently high density of states resulting in the high temperature of either spin ordering or superconducting pairing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  2. 2.
    G. E. Volovik, JETP Lett. 53, 222 (1991).ADSGoogle Scholar
  3. 3.
    P. Nozieres, J. Phys. (Fr.) 2, 443 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, Phys. Rev. Lett. 112, 186402 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    V. M. Pudalov, M. D’Iorio, and J. Campbell, JETP Lett. 57, 608 (1993).ADSGoogle Scholar
  6. 6.
    S. V. Kravchenko, W. Mason, J. E. Furneaux, and V. M. Pudalov, Phys. Rev. Lett. 75, 910 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    V. M. Pudalov and M. D’Iorio, Surf. Sci. 305, 107 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    G. E. Volovik, JETP Lett. 59, 830 (1994).ADSGoogle Scholar
  10. 10.
    A. P. Drozdov, M. I. Eremets, and I. A. Troyan, arXiv:1412.0460.Google Scholar
  11. 11.
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Nature 525, 73 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Quan and W. E. Pickett, Phys. Rev. B 93, 104526 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    A. Bianconi and T. Jarlborg, Eur. Phys. Lett. 112, 37001 (2015), Novel Supercond. Mater. 1, 15 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    T. Jarlborg and A. Bianconi, Sci. Rep. 6, 24816 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    A. Bussmann-Holder, J. Kohler, M.-H. Whangbo, A. Bianconi, and A. Simon, Novel Supercond. Mater. 2, 37 (2016).Google Scholar
  16. 16.
    S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    T. T. Heikkilä and G. E. Volovik, JETP Lett. 93, 59 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, JETP Lett. 94, 233 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504(R) (2011).Google Scholar
  20. 20.
    T. T. Heikkilä and G. E. Volovik, Springer Ser. Mater. Sci. 244, 123 (2016); arXiv:1504.05824.CrossRefGoogle Scholar
  21. 21.
    H. Weng, Y. Liang, Q. Xu, Y. Rui, Zh. Fang, X. Dai, and Y. Kawazoe, Phys. Rev. B 92, 045108 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Phys. Rev. Lett. 115, 036807 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    M. Neupane, I. Belopolski, M. M. Hosen, D. S. Sanchez, R. Sankar, M. Szlawska, S.-Y. Xu, K. Dimitri, N. Dhakal, P. Maldonado, P. M. Oppeneer, D. Kaczorowski, F. Chou, M. Z. Hasan, and T. Durakiewicz, Phys. Rev. B 93, 201104 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    Y.-H. Chan, C.-K. Chiu, M. Chou, and A. P. Schnyder, Phys. Rev. B 93, 205132 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    G. Bian, T.-R. Chang, R. Sankar, et al., Nat. Commun. 7 (2016).Google Scholar
  26. 26.
    J. Zhao, R. Yu, H. Weng, and Z. Fang, Phys. Rev. B 94, 195104 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    M. Hirayama, R. Okugawa, T. Miyake, and S. Murakami, arXiv:1602.06501.Google Scholar
  28. 28.
    H. Huang, J. Liu, D. Vanderbilt, and W. Duan, Phys. Rev. B 93, 201114 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    J. Liu and L. Balents, arXiv:1609.05529.Google Scholar
  30. 30.
    V. V. Dmitriev, A. A. Senin, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 115, 165304 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    G. E. Volovik, JETP Lett. 58, 469 (1993).ADSGoogle Scholar
  32. 32.
    N. B. Kopnin and G. E. Volovik, JETP Lett. 64, 690 (1996).ADSCrossRefGoogle Scholar
  33. 33.
    G. E. Volovik, JETP Lett. 104, 201 (2016).ADSCrossRefGoogle Scholar
  34. 34.
    J. W. McClure, Phys. Rev. 108, 612 (1957).ADSCrossRefGoogle Scholar
  35. 35.
    D. Pierucci, H. Sediri, M. Hajlaoui, J.-C. Girard, T. Brumme, M. Calandra, E. Velez-Fort, G. Patriarche, M. G. Silly, G. Ferro, V. Souliere, M. Marangolo, F. Sirotti, F. Mauri, and A. Ouerghi, ACS Nano 9, 5432 (2015).CrossRefGoogle Scholar
  36. 36.
    L. Tapasztor, G. Dobrik, Ph. Lambin, and L. P. Biror, Nat. Nanotechnol. 3, 397 (2008).CrossRefGoogle Scholar
  37. 37.
    L. P. Biror and P. Lambin, Carbon 48, 2677 (2010).CrossRefGoogle Scholar
  38. 38.
    X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. 100, 206803 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, and W. A. de Heer, Nat. Nanotechnol. 5, 727 (2010).ADSCrossRefGoogle Scholar
  40. 40.
    H. Ago, Y. Ito, M. Tsuji, and K. Ikeda, Nanoscale 4, 5178 (2012).ADSCrossRefGoogle Scholar
  41. 41.
    K. Hayashi, S. Sato, M. Ikeda, C. Kaneta, and N. Yokoyama, J. Am. Chem. Soc. 134, 12492 (2012).CrossRefGoogle Scholar
  42. 42.
    H. Ago, I. Tanaka, Y. Ogawa, R. M. Yunus, M. Tsuji, and H. Hibino, ACS Nano 7, 10825 (2013).CrossRefGoogle Scholar
  43. 43.
    R. M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, et al., Nat. Commun. 6, 8006 (2015).ADSCrossRefGoogle Scholar
  44. 44.
    M. Hiramatsu and M. Hori, Carbon Nanowalls (Springer, Wien, 2010).CrossRefGoogle Scholar
  45. 45.
    X. Shi, Z.-Q. Han, X.-L. Peng, P. Richard, T. Qian, X.-X. Wu, M.-W. Qiu, S. C. Wang, J. P. Hu, Y.-J. Sun, and H. Ding, arXiv:1606.01470.Google Scholar
  46. 46.
    P. Esquinazi, T. T. Heikkila, Yu. V. Lysogorskiy, D. A. Tayurskii, and G. E. Volovik, JETP Lett. 100, 336 (2014).ADSCrossRefGoogle Scholar
  47. 47.
    P. Esquinazi, Pap. Phys. 5, 050007 (2013).Google Scholar
  48. 48.
    A. Ballestar, J. Barzola-Quiquia, T. Scheike, and P. Esquinazi, New J. Phys. 15, 023024 (2013).ADSCrossRefGoogle Scholar
  49. 49.
    A. Ballestar, T. T. Heikkilä, and P. Esquinazi, Supercond Sci. Technol. 27, 115014 (2014).ADSCrossRefGoogle Scholar
  50. 50.
    E. Tang and L. Fu, Nat. Phys. 10, 964 (2014).CrossRefGoogle Scholar
  51. 51.
    A. Gozar, G. Logvenov, L. Fitting Kourkoutis, A. T. Bollinger, L. A. Giannuzzi, D. A. Muller, and I. Bozovic, Nature 455, 782 (2008).ADSCrossRefGoogle Scholar
  52. 52.
    Y. Kawashima, AIP Adv. 3, 052132 (2013).ADSCrossRefGoogle Scholar
  53. 53.
    A. N. Ionov, Tech. Phys. Lett. 41, 651 (2015).ADSCrossRefGoogle Scholar
  54. 54.
    A. N. Ionov, J. Low Temp. Phys. 185, 515 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto UniversityAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsChernogolovka, Moscow regionRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations