Advertisement

JETP Letters

, Volume 104, Issue 11, pp 776–783 | Cite as

Aging effects in the nonequilibrium behavior of multilayer magnetic superstructures

  • V. V. PrudnikovEmail author
  • P. V. Prudnikov
  • A. N. Purtov
  • M. V. Mamonova
Condensed Matter

Abstract

A numerical Monte Carlo study of the nonequilibrium behavior of multilayer magnetic superstructures consisting of alternating magnetic and nonmagnetic nanolayers is performed. The calculated two-time autocorrelation function and the staggered magnetization of the structure at its evolution starting from various initial states are analyzed. The analysis reveals aging effects characterized by a slowing down of the relaxation and correlation characteristics in the system with the waiting time. It is shown that, in contrast to bulk magnetic systems, the aging effects in magnetic superstructures arise not only near the ferromagnetic ordering temperature T c in the films but also within a wide temperature range at TT c.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. F. Cugliandolo, Slow Relaxation and Nonequilibrium Dynamics in Condensed Matter, Vol. 77 of Les Houches—Ecole d’Ete de Physique Theorique, Ed. by J.-L. Barrat et al. (Springer, Berlin, 2003), Vol. 77, p.371.Google Scholar
  2. 2.
    M. Henkel and M. Pleimling, in Non-Equilibrium Phase Transitions, Vol. 2: Ageing and Dynamical Scaling far from Equilibrium, Theoretical and Mathematical Physics (Springer, Heidelberg, 2010), p.544.CrossRefzbMATHGoogle Scholar
  3. 3.
    C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, Rep. Prog. Phys. 71, 056501 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    L. Berthier and J. Kurchan, Nature Phys. 9, 310 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and M. Mezard, in Spin Glasses and Random Fields, Ed. by A. P. Young, Vol. 12 of Directions in Condensed Matter Physics (World Scientific, Singapore, 1998), p. 443.Google Scholar
  6. 6.
    P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    P. V. Prudnikov, V. V. Prudnikov, E. A. Pospelov, P. N. Malyarenko, and A. N. Vakilov, Prog. Theor. Exp. Phys. 2015, 053A01 (2015).CrossRefGoogle Scholar
  8. 8.
    A. B. Drovosekov, N. M. Kreines, D. I. Kholin, A. V. Korolev, M. A. Milyaev, L. N. Romashev, and V. V. Ustinov, JETP Lett. 88, 118 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    T. Mukherjee, M. Pleimling, and Ch. Binek, Phys. Rev. B 82, 134425 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Prudnikov, P. V. Prudnikov, and D. E. Romanovskii, JETP Lett. 102, 668 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    J. Bass and W. P. Pratt, J. Magn. Magn. Mater. 200, 274 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Prudnikov, P. V. Prudnikov, and D. E. Romanovskiy, J. Phys. D: Appl. Phys. 49, 235002 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    P. V. Prudnikov, V. V. Prudnikov, and M. A. Medvedeva, JETP Lett. 100, 446 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    P. V. Prudnikov, V. V. Prudnikov, M. A. Menshikova, and N. I. Piskunova, J. Magn. Magn. Mater. 387, 77 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    V. V. Prudnikov, A. N. Vakilov, and P. V. Prudnikov, Phase Transitions and Methods Their Computer Simulations (Fizmatlit, Moscow, 2009) [in Russian].zbMATHGoogle Scholar
  16. 16.
    V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Description of Non-Equilibrium Critical Behavior in Disordered Systems by Theoretical Methods (Fizmatlit, Moscow, 2013) [in Russian].zbMATHGoogle Scholar
  17. 17.
    S. T. Bramwell and P. C. W. Holdsworth, J. Phys.: Condens. Matter 5, L53 (1993).ADSGoogle Scholar
  18. 18.
    V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1970), V. L. Berezinskii, Low-Temperature Properties of Two-Dimensional Systems (Fizmatlit, Moscow, 2007) [in Russian].ADSMathSciNetGoogle Scholar
  19. 19.
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).ADSCrossRefGoogle Scholar
  20. 20.
    F. Huang, M. T. Kief, G. J. Mankey, and R. F. Willis, Phys. Rev. B 49, 3962 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    A. Asad and B. Zheng, J. Phys. A: Math. Theor. 40, 9957 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    A. J. Bray, Adv. Phys. 43, 357 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    A. J. Bray, A. J. Briant, and D. K. Jervis, Phys. Rev. Lett. 84, 1503 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    B. Berche, J. Phys. A 36, 585 (2003).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    V. V. Prudnikov, P. V. Prudnikov, S. V. Alekseev, and I. S. Popov, Phys. Met. Metallogr. 115, 1186 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    L. Berthier, P. C. W. Holdsworth, and M. Sellitto, J. Phys. A 34, 1805 (2001).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    H. Weber and P. Minnhagen, Phys. Rev. B 37, 5986 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • V. V. Prudnikov
    • 1
    Email author
  • P. V. Prudnikov
    • 1
  • A. N. Purtov
    • 1
  • M. V. Mamonova
    • 1
  1. 1.Omsk State UniversityOmskRussia

Personalised recommendations