JETP Letters

, Volume 104, Issue 10, pp 679–684 | Cite as

High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications

  • D. O. Ignatyeva
  • P. O. Kapralov
  • G. A. Knyazev
  • S. K. Sekatskii
  • G. Dietler
  • M. Nur-E-Alam
  • M. Vasiliev
  • K. Alameh
  • V. I. Belotelov
Optics and Laser Physics

Abstract

A novel type of a plasmonic sensor based on a magnetophotonic plasmonic heterostructure with an ultrahigh-Q resonance is considered. A magnetoplasmonic resonance with an angular width of 0.06°, which corresponds to a Q factor of 700 and is a record value for magnetoplasmonic sensors, is experimentally demonstrated. It is shown that, owing to the excitation of long-propagation-range plasmons, the transverse magneto-optical Kerr effect is considerably enhanced and, thus, the sensitivity of the magnetoplasmonic sensor to variations in the refractive index increases to 18 RIU–1, where RIU is the refractive index unit. Numerical calculations indicate that the parameters of the magnetoplasmonic structure can be further optimized to attain sensitivities up to 5 × 103 RIU–1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Homola, Chem. Rev. 108, 462 (2008).CrossRefGoogle Scholar
  2. 2.
    J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, Nat. Mater. 7, 442 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    R. Slavik and J. Homola, Sens. Actuators B: Chem. 123, 10 (2007).CrossRefGoogle Scholar
  4. 4.
    V. N. Konopsky, D. V. Basmanov, E. V. Alieva, D. I. Dolgy, E. D. Olshansky, S. K. Sekatskii, and G. Dietler, New J. Phys. 11, 063049 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    E. V. Alieva, V. N. Konopsky, D. V. Basmanov, S. K. Sekatskii, and G. Dietler, Opt. Commun. 309, 148 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Baryshev, A. M. Merzlikin, and M. Inoue, J. Phys. D: Appl. Phys. 46, 125107 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    V. N. Konopsky and E. V. Alieva, Phys. Rev. Lett. 97, 253904 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    V. N. Konopsky, New J. Phys. 12, 093006 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    H. Raether, Surface Plasmons on Smooth Surfaces (Springer, Berlin, 1988).Google Scholar
  10. 10.
    B. Sepúlveda, L. M. Lechuga, and G. Armelles, J. Lightwave Technol. 24, 945 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, Opt. Lett. 31, 1085 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, J. Appl. Phys. 108, 054502 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, Nat. Commun. 6, 6150 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gäspär, and E. Gheorghiu, Biosens. Bioelectron. 63, 525 (2015).CrossRefGoogle Scholar
  15. 15.
    M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Garcia-Martin, and R. Rella, Biosens. Bioelectron. 58, 114 (2014).CrossRefGoogle Scholar
  16. 16.
    A. A. Grunin, I. R. Mukha, A. V. Chetvertukhin, and A. A. Fedyanin, J. Magn. Magn. Mater. (2016).Google Scholar
  17. 17.
    N. E. Khokhlov et al., J. Phys. D: Appl. Phys. 48, 095001 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    N. A. Gusev, V. I. Belotelov, and A. K. Zvezdin, Opt. Lett. 39, 4108 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    B. L. Johnson and H. H. Shiau, J. Phys.: Condens. Matter 20, 335217 (2008).Google Scholar
  20. 20.
    V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, Nature Photon. 4, 107 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    V. I. Belotelov, L. E. Kreilkamp, and A. N. Kalish, Phys. Rev. B 89, 045118 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    A. P. Sukhorukov, D. O. Ignatyeva, and A. N. Kalish, J. Infrared Millim. Terahertz Waves 32, 1223 (2011).CrossRefGoogle Scholar
  23. 23.
    A. N. Kalish, D. O. Ignatyeva, V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. V. Gopal, M. Bayer, and A. P. Sukhorukov, Laser Phys. 24, 094006 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, Sci. Rep. 6, 28077 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    R. V. Andaloro, R. T. Deck, and H. J. Simon, J. Opt. Soc. Am. 22, 1512 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    V. N. Konopsky and E. V. Alieva, Opt. Lett. 34, 479 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    H. J. Simon, R. V. Andaloro, and R. T. Deck, Opt. Lett. 32, 1590 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • D. O. Ignatyeva
    • 1
    • 2
  • P. O. Kapralov
    • 2
  • G. A. Knyazev
    • 1
    • 2
  • S. K. Sekatskii
    • 3
  • G. Dietler
    • 3
  • M. Nur-E-Alam
    • 4
  • M. Vasiliev
    • 4
  • K. Alameh
    • 4
  • V. I. Belotelov
    • 1
    • 2
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Russian Quantum CenterMoscowRussia
  3. 3.Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Physique de la Matière VivanteInstitut de PhysiqueLausanneSwitzerland
  4. 4.Edith Cowan UniversityElectron Science Research InstitutePerthAustralia

Personalised recommendations