Advertisement

JETP Letters

, Volume 104, Issue 9, pp 645–648 | Cite as

Black hole and hawking radiation by type-II Weyl fermions

  • G. E. Volovik
Miscellaneous

Abstract

The type-II Weyl and type-II Dirac fermions may emerge behind the event horizon of black holes. Correspondingly, the black hole can be simulated by creation of the region with overtilted Weyl or Dirac cones. The filling of the electronic states inside the “black hole” is accompanied by Hawking radiation. The Hawking temperature in the Weyl semimetals can reach the room temperature, if the black hole region is sufficiently small, and thus the effective gravity at the horizon is large.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Weyl, I. Z. Phys. 56, 330 (1929).ADSCrossRefGoogle Scholar
  2. 2.
    J. von Neumann and E. Wigner, Phys. Z. 30, 467 (1929).Google Scholar
  3. 3.
    S. P. Novikov, Sov. Math. Dokl. 23, 298 (1981).Google Scholar
  4. 4.
    G. E. Volovik, JETP Lett. 46, 98 (1987).ADSGoogle Scholar
  5. 5.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).MATHGoogle Scholar
  6. 6.
    G. E. Volovik and V. A. Konyshev, JETP Lett. 47, 250 (1988).ADSGoogle Scholar
  7. 7.
    T. D. C. Bevan, A. J. Manninen, J. B. Cook, J. R. Hook, H. E. Hall, T. Vachaspati, and G. E. Volovik, Nature 386, 689 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    M. Krusius, T. Vachaspati, and G. E. Volovik, condmat/ 9802005.Google Scholar
  9. 9.
    G. E. Volovik, Physica B 255, 86 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    C. Herring, Phys. Rev. 52, 365 (1937).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Abrikosov and S. D. Beneslavskii, Sov. Phys. JETP 32, 699 (1971).ADSGoogle Scholar
  12. 12.
    A. A. Abrikosov, J. Low Temp. Phys. 5, 141 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    H. Weng, Ch. Fang, Zh. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).Google Scholar
  17. 17.
    Sh.-M. Huang, S.-Y. Xu, I. Belopolski, et al. (Collab.), Nat. Commun. 6, 7373 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    B. Q. Lv, H. M. Weng, B. B. Fu, et al. (Collab.), Phys. Rev. X 5, 031013 (2015).Google Scholar
  19. 19.
    S.-Y. Xu, I. Belopolski, N. Alidoust, et al. (Collab.), Science 349, 613 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    L. Lu, Zh. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljacic, Science 349, 622 (2015).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. A. Soluyanov, D. Gresch, Zh. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature 527, 495 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    Y. Xu, F. Zhang, and Ch. Zhang, Phys. Rev. Lett. 115, 265304 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    T.-R. Chang, S.-Y. Xu, G. Chang, et al. (Collab.), Nat. Commun. 7, 10639 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    G. Autes, D. Gresch, A. A. Soluyanov, M. Troyer, and O. V. Yazyev, arXiv:1603.04624.Google Scholar
  25. 25.
    S.-Y. Xu, N. Alidoust, G. Chang, et al. (Collab.), arXiv:1603.07318.Google Scholar
  26. 26.
    J. Jiang, Z. K. Liu, Y. Sun, et al. (Collab.), arXiv:1604.00139.Google Scholar
  27. 27.
    T. E. O’Brien, M. Diez, and C. W. J. Beenakker, arXiv:1604.01028.Google Scholar
  28. 28.
    L. Huang, T. M. McCormick, M. Ochi, Z. Zhao, M. Suzuki, R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan, N. Trivedi, and A. Kaminski, arXiv:1603.06482.Google Scholar
  29. 29.
    N. Xu, Z. J. Wang, A. P. Weber, et al. (Collab.), arXiv:1604.02116.Google Scholar
  30. 30.
    K. Deng, G. Wan, P. Deng, et al. (Collab.), arXiv:1603.08508.Google Scholar
  31. 31.
    A. Liang, J. Huang, S. Nie, et al. (Collab.), arXiv:1604.01706.Google Scholar
  32. 32.
    M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).ADSGoogle Scholar
  33. 33.
    Y. Wu, N. H. Jo, D. Mou, L. Huang, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, arXiv:1604.05176.Google Scholar
  34. 34.
    Y. Xu, F. Zhang, and C. Zhang, Phys. Rev. Lett. 115, 265304 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    Z. Yu, Y. Yao, and S. A. Yang, arXiv:1604.04030.Google Scholar
  36. 36.
    M. Udagawa and E. J. Bergholtz, arXiv:1604.08457.Google Scholar
  37. 37.
    A. A. Zyuzin and R. P. Tiwari, arXiv:1601.00890.Google Scholar
  38. 38.
    G. E. Volovik and M. A. Zubkov, Nucl. Phys. B 881, 514 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    P. Huhtala and G. E. Volovik, J. Exp. Theor. Phys. 121, 995 (2002); gr-qc/0111055.Google Scholar
  40. 40.
    G. E. Volovik, arXiv:1604.00849.Google Scholar
  41. 41.
    P. Painlevé, C. R. Hebd. Seances Acad. Sci. 173, 677 (1921); A. Gullstrand, Ark. Mat., Astron. Fys. 16, 1 (1922).ADSGoogle Scholar
  42. 42.
    W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).ADSCrossRefGoogle Scholar
  43. 43.
    W. G. Unruh, Phys. Rev. D 51, 2827 (1995).ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    P. Kraus and F. Wilczek, Mod. Phys. Lett. A 9, 3713 (1994).ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    C. Doran, Phys. Rev. D 61, 067503 (2000).ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    V. A. Kostelecky and N. Russell, Rev. Mod. Phys. 83, 11 (2011).ADSCrossRefGoogle Scholar
  47. 47.
    G. E. Volovik, JETP Lett. 91, 55 (2010); arXiv:0912.0502.ADSCrossRefGoogle Scholar
  48. 48.
    C. Barcelo, S. Liberati, and M. Visser, Class. Quantum Grav. 18, 1137 (2001).ADSCrossRefGoogle Scholar
  49. 49.
    O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, Phys. Rev. Lett. 105, 240401 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto UniversityAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations