Advertisement

JETP Letters

, Volume 104, Issue 8, pp 552–556 | Cite as

Boson peak in various random-matrix models

  • Y. M. Beltukov
  • D. A. Parshin
Condensed Matter

Abstract

A so-called boson peak in the reduced density g(ω)ω2 of vibrational states is one of the most universal properties of amorphous solids (glasses). It quantifies the excess density of states above the Debye value at low frequencies ω. Its nature is not fully understood and, at a first sight, is nonuniversal. It is shown in this work that, under rather general assumptions, the boson peak emerges in a natural way in very dissimilar models of stable random dynamic matrices possessing translational symmetry. This peak can be shifted toward both higher and lower frequencies (down to zero frequency) by varying the parameters of the distribution and the degree of disorder in the system. The frequency ωb of the boson peak appears to be proportional to the elastic modulus E of the system in all cases under investigation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Parshin, Phys. Solid State 36, 991 (1994).ADSGoogle Scholar
  2. 2.
    V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B 67, 094203 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    V. L. Gurevich, D. A. Parshin, J. Pelous, and H. R. Schober, Phys. Rev. B 48, 16318 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    D. A. Parshin and C. Laermans, Phys. Rev. B 63, 132203 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    B. Rufflé, G. Guimbretière, E. Courtens, R. Vacher, and G. Monaco, Phys. Rev. Lett. 96, 045502 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    B. Rufflé, D. A. Parshin, E. Courtens, and R. Vacher, Phys. Rev. Lett. 100, 015501 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    H. Shintani and H. Tanaka, Nat. Mater. 7, 870 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1971).Google Scholar
  9. 9.
    Y. M. Beltukov and D. A. Parshin, JETP Lett. 93, 598 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    J. C. Maxwell, Philos. Mag. 27, 294 (1865).Google Scholar
  11. 11.
    C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E 68, 011306 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    Y. M. Beltukov, JETP Lett. 101, 345 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    Y. M. Beltukov, V. I. Kozub, and D. A. Parshin, Phys. Rev. B 87, 134203 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    Y. M. Beltukov, C. Fusco, D. A. Parshin, and A. Tanguy, Phys. Rev. E 93, 023006 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    V. Vitelli, N. Xu, M. Wyart, A. J. Liu, and S. R. Nagel, Phys. Rev. E 81, 021301 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations