JETP Letters

, Volume 104, Issue 6, pp 431–439 | Cite as

Transfer processes in a metal with hot electrons excited by a laser pulse

  • Yu. V. Petrov
  • K. P. Migdal
  • N. A. Inogamov
  • S. I. Anisimov
Scientific Summaries

Abstract

Ultrashort laser pulses are widely used in technological processes. A metal irradiated by ultrashort laser pulses is transferred to a two-temperature (2Т) state where the electron temperature is above the temperature of the ion subsystem. The theory of interaction of ultrashort laser pulses with metals includes the description of the thermal conductivity in 2Т states as an important component. This work is devoted to the solution of a serious problem of the determination of the 2Т thermal conductivity. To this end, a technique for the solution of the kinetic equation at temperatures comparable with the Fermi energy is developed for the high-temperature region of the phase diagram. Furthermore, quantum molecular dynamics (QMD) simulation of 2Т ion configurations is performed and the electrical resistivity of these configurations is calculated by the Kubo–Greenwood (QMD–KG) formula. The data calculated by the QMD–KG formula are compared to those obtained with the kinetic equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11448_2016_1305_MOESM1_ESM.pdf (562 kb)
Transport Processes in Metal with Hot Electrons Excited by Laser Pulse

References

  1. 1.
    S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, Sov. Phys. JETP 39, 375 (1974).ADSGoogle Scholar
  2. 2.
    O. V. Misochko, Phys. Usp. 56, 868 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    E. S. Zijlstra, A. Kalitsov, T. Zier, and M. E. Garcia, Phys. Rev. X 3, 011005 (2013).Google Scholar
  4. 4.
    K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Hueller, Phys. Rev. E 62, 1202 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, Phys. Rev. E 65, 016409 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    M. B. Agranat, N. E. Andreev, S. I. Ashitkov, M. E. Veisman, P. R. Levashov, A. V. Ovchinnikov, D. S. Sitnikov, V. E. Fortov, and K. V. Khishchenko, JETP Lett. 85, 271 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    N. A. Inogamov and Yu. V. Petrov, J. Exp. Theor. Phys. 110, 446 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    S. G. Bezhanov, A. P. Kanavin, and S. A. Uryupin, Opt. Spectrosc. 114, 384 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    S. G. Bezhanov, A. P. Kanavin, and S. A. Uryupin, Quantum Electron. 44, 859 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    C. Fourment, F. Deneuville, D. Descamps, F. Dorchies, S. Petit, O. Peyrusse, B. Holst, and V. Recoules, Phys. Rev. B 89, 161110(R) (2014).ADSCrossRefGoogle Scholar
  11. 11.
    Zh. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    N. A. Inogamov, Yu. V. Petrov, V. V. Zhakhovsky, V. A. Khokhlov, B. J. Demaske, S. I. Ashitkov, K. V. Khishchenko, K. P. Migdal, M. B. Agranat, S. I. Anisimov, V. E. Fortov, and I. I. Oleynik, AIP Conf. Proc. 1464, 593 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    K. P. Migdal, Yu. V. Petrov, and N. A. Inogamov, Proc. SPIE 9065, 906503 (2013).CrossRefGoogle Scholar
  14. 14.
    G. V. Sinko, N. A. Smirnov, A. A. Ovechkin, P. R. Levashov, and K. V. Khishchenko, High Energy Density Phys. 9, 309 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    E. Bevillon, J. P. Colombier, V. Recoules, and R. Stoian, Phys. Rev. B 89, 115117 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    Yu. Petrov, K. Migdal, N. Inogamov, and V. Zhakhovsky, Appl. Phys. B 119, 401 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    Ya. Cherednikov, N. A. Inogamov, and H. M. Urbassek, Phys. Rev. B 88, 134109 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, B. J. Demaske, K. V. Khishchenko, and I. I. Oleynik, J. Phys.: Conf. Ser. 500, 192023 (2014).ADSGoogle Scholar
  19. 19.
    D. K. Ilnitsky, V. A. Khokhlov, N. A. Inogamov, V. V. Zhakhovsky, Yu. V. Petrov, K. V. Khishchenko, K. P. Migdal, and S. I. Anisimov, J. Phys.: Conf. Ser. 500, 032021 (2014).ADSGoogle Scholar
  20. 20.
    N. A. Inogamov, V. V. Zhakhovsky, Yu. V. Petrov, V. A. Khokhlov, S. I. Ashitkov, K. P. Migdal, D. K. Ilnitsky, Yu. N. Emirov, P. S. Komarov, M. B. Agranat, S. I. Anisimov, and V. E. Fortov, J. Opt. Technol. 81, 233 (2014).CrossRefGoogle Scholar
  21. 21.
    Yu. V. Petrov, N. A. Inogamov, and K. P. Migdal, Izv. Kab.-Balk. Univ. 4 (3), 15 (2014).Google Scholar
  22. 22.
    Yu. V. Petrov, N. A. Inogamov, S. I. Anisimov, K. P. Migdal, V. A. Khokhlov, and K. V. Khishchenko, J. Phys.: Conf. Ser. 653, 012087 (2015).ADSGoogle Scholar
  23. 23.
    Yu. V. Petrov, N. A. Inogamov, and K. P. Migdal, in Proceedings of the Progress In Electromagnetics Research Symposium PIERS, Prague, July 6–9, 2015 (Electromagnetics Academy, 2015), p. 2431.Google Scholar
  24. 24.
    C. Y. Ho, R. W. Powell, and P. E. Liley, J. Phys. Chem. Ref. Data 1, 279 (1972).ADSCrossRefGoogle Scholar
  25. 25.
    R. A. Matula, J. Phys. Chem. Ref. Data 8, 1147 (1979).ADSCrossRefGoogle Scholar
  26. 26.
    T. Huepf, C. Cagran, and G. Pottlacher, EPJ Web Conf. 15, 01018 (2011).CrossRefGoogle Scholar
  27. 27.
    A. V. Bushman, G. I. Kanel, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor Francis, London, 1993).Google Scholar
  28. 28.
    K. V. Khishchenko, S. I. Tkachenko, P. R. Levashov, I. V. Lomonosov, and V. S. Vorob’ev, Int. J. Thermophys. 23, 1359 (2002).CrossRefGoogle Scholar
  29. 29.
    Shock Wave Database. http://teos.ficp.ac.ru/rusbank/.Google Scholar
  30. 30.
    A. Khomkin and A. Shumikhin, Zh. Eksp. Teor. Fiz. (2016, in press).Google Scholar
  31. 31.
    K. P. Migdal, D. K. Il’nitsky, Yu. V. Petrov, and N. A. Inogamov, J. Phys.: Conf. Ser. 653, 012086 (2015).ADSGoogle Scholar
  32. 32.
    Yu. V. Petrov, N. A. Inogamov, and K. P. Migdal, JETP Lett. 97, 20 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    K. P. Migdal, Yu. V. Petrov, D. K. Il’nitsky, V. V. Zhakhovsky, N. A. Inogamov, K. V. Khishchenko, D. V. Knyazev, and P. R. Levashov, Appl. Phys. A 122, 408 (2016).ADSCrossRefGoogle Scholar
  34. 34.
    L. Spitzer, Physics of Fully Ionized Gas (Wiley Interscience, New York, 1962; Mir, Moscow, 1965).Google Scholar
  35. 35.
    V. E. Fortov, V. Ya. Ternovoi, M. V. Zhernokletov, M. A. Mochalov, A. L. Mikhailov, A. S. Filimonov, A. A. Pyalling, V. B. Mintsev, V. K. Gryaznov, and I. L. Iosilevski, J. Exp. Theor. Phys. 97, 259 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    H. Reinholz, G. Roepke, S. Rosmej, and R. Redmer, Phys. Rev. E 91, 043105 (2015).ADSCrossRefGoogle Scholar
  37. 37.
    M. Kandyla, T. Shih, and E. Mazur, Phys. Rev. B 75, 214107 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, and K. Nishihara, Appl. Surf. Sci. 255, 9592 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    J. Wang and C. Guo, Appl. Phys. A 111, 273 (2013).ADSCrossRefGoogle Scholar
  40. 40.
    D. Alfe, M. Pozzo, and M. P. Desjarlais, Phys. Rev. B 85, 024102 (2012).ADSCrossRefGoogle Scholar
  41. 41.
    X. Sha and R. E. Cohen, J. Phys.: Condens. Matter 23, 075401 (2011).ADSGoogle Scholar
  42. 42.
    M. E. Povarnitsyn, D. V. Knyazev, and P. R. Levashov, Contrib. Plasma Phys. 52, 145 (2012).ADSCrossRefGoogle Scholar
  43. 43.
    D. V. Knyazev and P. R. Levashov, Phys. Plasmas 21, 073302 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    D. V. Knyazev and P. R. Levashov, Phys. Plasmas 22, 053303 (2015).ADSCrossRefGoogle Scholar
  45. 45.
    G. E. Norman, I. M. Saitov, V. V. Stegailov, and P. A. Zhilyaev, Contrib. Plasma Phys. 53, 300 (2013).ADSCrossRefGoogle Scholar
  46. 46.
    G. E. Norman, S. V. Starikov, V. V. Stegailov, I. M. Saitov, and P. A. Zhilyaev, Contrib. Plasma Phys. 53, 129 (2013).ADSCrossRefGoogle Scholar
  47. 47.
    http://www.abinit.org/.Google Scholar
  48. 48.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  49. 49.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).ADSCrossRefGoogle Scholar
  50. 50.
    http://elk.sourceforge.net.Google Scholar
  51. 51.
    V. Recoules, J. Clerouin, G. Zerah, P. M. Anglade, and S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006).ADSCrossRefGoogle Scholar
  52. 52.
    M. M. G. Alemany, L. J. Gallego, and D. J. Gonzalez, Phys. Rev. B 70, 134206 (2004).ADSCrossRefGoogle Scholar
  53. 53.
    J. Hubbard, Proc. R. Soc. London, Ser. A 240 (1223), 539 (1957).ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjolander, Phys. Rev. 176, 589 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • Yu. V. Petrov
    • 1
  • K. P. Migdal
    • 2
  • N. A. Inogamov
    • 1
    • 2
  • S. I. Anisimov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Dukhov Research Institute of AutomaticsMoscowRussia

Personalised recommendations