Advertisement

JETP Letters

, Volume 104, Issue 5, pp 323–328 | Cite as

Transport of electrons on liquid helium in a microchannel device near the current threshold

  • N. R. Beysengulov
  • D. G. Rees
  • D. A. Tayurskii
  • K. Kono
Condensed Matter

Abstract

We study the transport of strongly interacting electrons on the surface of liquid helium confined in a microchannel geometry, near the current threshold point. The current threshold depends on the electrostatic confinement, created by the microchannel electrodes, and on the electrostatic potential of electron system. Depending on the geometry of the microchannel, the current pinch-off can occur at the center or move to the edges of the microchannel, as confirmed by Finite Element Model calculations. The confining potential dependence of electron conductivity above the current threshold point is consistent with a classical charge continuum model. However, we find that below the threshold point electron transport is suppressed due to charging energy effects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Y. Andrei, Two-Dimensional Electron Systems on Helium and Other Cryogenic Substrates (Kluwer Academic, Dordrecht, 1997).CrossRefGoogle Scholar
  2. 2.
    Yu. P. Monarkha and K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004).CrossRefGoogle Scholar
  3. 3.
    V. V. Deshpande, M. Bockrath, L. I. Glazman, and A. Yacoby, Nature 464 (7286), 209 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    D. G. Rees, I. Kuroda, C. A. Marrache-Kikuchi, M. Höfer, P. Leiderer, and K. Kono, Phys. Rev. Lett. 106, 026803 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    D. G. Rees, H. Totsuji, and K. Kono, Phys. Rev. Lett. 108, 176801 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    H. Ikegami, H. Akimoto, D. G. Rees, and K. Kono, Phys. Rev. Lett. 109, 236802 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    D. G. Rees, H. Ikegami, and K. Kono, J. Phys. Soc Jpn. 82, 124602 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    D. G. Rees, N. R. Beysengulov, J.-J. Lin, and K. Kono, Phys. Rev. Lett. 116, 206801 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    D. G. Rees, I. Kuroda, C. A. Marrache-Kikuchi, M. Höfer, P. Leiderer, and K. Kono, J. Low Temp. Phys. 166, 107 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Iye, J. Low Temp. Phys. 40, 441 (1980).ADSCrossRefGoogle Scholar
  11. 11.
    N. R. Beysengulov, D. G. Rees, Y. Lysogorskiy, N. K. Galiullin, A. S. Vazjukov, D. A. Tayurskii, and K. Kono, J. Low Temp. Phys. 182, 28 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    F. Hecht, J. Numer. Math. 20, 251 (2012).MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. G. Rees, I. Kuroda, C. A. Marrache-Kikuchi, M. Hofer, P. Leiderer, and K. Kono, J. Low Temp. Phys. 166, 107 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Iye, J. Low Temp. Phys. 40, 441 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    N. R. Beysengulov, D. G. Rees, Y. Lysogorskiy, N. K. Galiullin, A. S. Vazjukov, D. A. Tayurskii, and K. Kono, J. Low Temp. Phys. 182, 28 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    F. Hecht, J. Numer. Math. 20, 251 (2012).MathSciNetCrossRefGoogle Scholar
  17. 17.
    B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. Gr. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    B. Brun, F. Martins, S. Faniel, B. Hackens, A. Cavanna, C. Ulysse, A. Ouerghi, U. Gennser, D. Mailly, P. Simon, S. Huant, V. Bayot, M. Sanquer, and H. Sellier, Phys. Rev. Lett. 116, 136801 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    J. Kammhuber, M. C. Cassidy, H. Zhang, O. Gul, F. Pei, M. W. A. de Moor, B. Nijholt, K. Watanabe, T. Taniguchi, D. Car, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nano Lett. 16, 3482 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    L. P. Kouwenhoven, N. C. van der Vaart, A. T. Johnson, W. Kool, C. J. P. M. Harmans, J. G. Williamson, A. A. M. Staring, and C. T. Foxon, Z. Phys. B 85, 367 (1991).ADSCrossRefGoogle Scholar
  21. 21.
    A. Tilke, R. H. Blick, H. Lorenz, J. P. Kotthaus, and D. A. Wharam, Appl. Phys. Lett. 75, 3704 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    S. Sapmaz, P. Jarillo-Herrero, J. Kong, C. Dekker, L. P. Kouwenhoven, and H. S. J. van der Zant, Phys. Rev. B 71, 153402 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    V. V. Deshpande and M. Bockrath, Nat. Phys. 4, 314 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • N. R. Beysengulov
    • 1
    • 2
  • D. G. Rees
    • 2
    • 3
  • D. A. Tayurskii
    • 1
    • 2
  • K. Kono
    • 1
    • 2
    • 3
  1. 1.KFU–RIKEN Joint Research LaboratoryInstitute of Physics, Kazan Federal UniversityKazanRussia
  2. 2.RIKEN CEMSWakoJapan
  3. 3.NCTU–RIKEN Joint Research LaboratoryInstitute of Physics, National Chiao Tung University300 HsinchuRepublic of China

Personalised recommendations