Advertisement

JETP Letters

, Volume 104, Issue 4, pp 263–268 | Cite as

Chain structures and clusters of particles with the mixed dipole–quadrupole interaction in smectic freely suspended nanofilms

  • P. V. Dolganov
  • N. S. Shuravin
  • V. K. Dolganov
  • E. I. Kats
Condensed Matter
  • 35 Downloads

Abstract

The formation of unusual chain structures and clusters of particles with the mixed dipole–quadrupole interaction has been found in smectic nanofilms. Unlike topological dipoles and quadrupoles, the interaction between which leads to the formation of structures with finite interparticle distances, the particles with the mixed interaction touch each other and form stable chains and two-dimensional clusters. The orientation of particles in chains is intermediate between dipole and quadrupole chains. The variation of the interparticle distance and orientation of chains is explained qualitatively on the basis of the calculation of the с-director (field lines) near particles and the mutual arrangement of particles providing the minimum distortion of field lines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, Science 275, 1770 (1997).CrossRefGoogle Scholar
  2. 2.
    T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, Phys. Rev. E 57, 610 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    P. Poulin and D. A. Weitz, Phys. Rev. E 57, 626 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    P. Cluzeau, P. Poulin, G. Joly, and H. T. Nguyen, Phys. Rev. E 63, 031702 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    P. V. Dolganov, E. I. Demikhov, V. K. Dolganov, B. M. Bolotin, and K. Krohn, Eur. Phys. J. E 12, 593 (2003).CrossRefGoogle Scholar
  6. 6.
    C. Völtz and R. Stannarius, Phys. Rev. E 70, 061702 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    P. V. Dolganov, H. T. Nguyen, G. Joly, V. K. Dolganov, and P. Cluzeau, Europhys. Lett. 76, 250 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    P. V. Dolganov, H. T. Nguyen, E. I. Kats, V. K. Dolganov, and P. Cluzeau, Phys. Rev. E 75, 031706 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    C. Bohley and R. Stannarius, Soft Matter 4, 683 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    P. V. Dolganov and P. Cluzeau, Phys. Rev. E 90, 062501 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    D. Pettey, N. C. Lubensky, and D. R. Link, Liq. Cryst. 25, 579 (1998).CrossRefGoogle Scholar
  12. 12.
    P. V. Dolganov and V. K. Dolganov, Phys. Rev. E 73, 041706 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    K. S. Korolev and D. R. Nelson, Phys. Rev. E 77, 051702 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    P. Patrício, M. Tasinkevych, and M. M. Telo da Gama, Eur. Phys. J. E 7, 117 (2002).CrossRefGoogle Scholar
  15. 15.
    N. Tasinkevych, N. M. Silvestre, P. Patrício, and M. M. Telo da Gama, Eur. Phys. J. E 9, 341 (2002).CrossRefGoogle Scholar
  16. 16.
    P. V. Dolganov and B. M. Bolotin, JETP Lett. 77, 429 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    P. Pieranski, L. Bieliard, J.-Ph. Tournelles, X. Leoncini, C. Furtlehner, H. Dumovlin, E. Rion, B. Jouvin, J.-P. Fenerol, Ph. Palaric, J. Heuving, B. Cartier, and I. Kraus, Physica A 194, 364 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, Science 278, 1924 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • P. V. Dolganov
    • 1
    • 2
  • N. S. Shuravin
    • 1
    • 2
  • V. K. Dolganov
    • 1
  • E. I. Kats
    • 3
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  3. 3.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations