JETP Letters

, Volume 104, Issue 3, pp 193–196 | Cite as

Thermal stability of diamond-like carbon nanothreads

  • L. A. Openov
  • A. I. Podlivaev
Condensed Matter


The thermally activated fracture processes in the carbon backbone of diamond-like carbon nanothreads and the hydrogen desorption from them has been studied by the molecular dynamics method. Specifically, the temperature dependence of the characteristic desorption time at T = 1700−2800 K has been determined. The activation energy and frequency factor in the Arrhenius formula for the desorption rate are found. This allows estimating the desorption time at any temperature. The mechanical stiffness of nanothreads is calculated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Liu, G. Wang, Q. Huang, L. Guo, and X. Chen, Phys. Rev. Lett. 108, 225505 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G. Su, J. Appl. Phys. 112, 074315 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, and A. R. Oganov, Nano Lett. 15, 6182 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    M. M. Haley, Pure Appl. Chem. 80, 519 (2008).CrossRefGoogle Scholar
  6. 6.
    G. X. Li, Y. L. Li, H. B. Liu, Y. B. Guo, Y. J. Li, and D. B. Zhu, Chem. Commun. 46, 3256 (2010).CrossRefGoogle Scholar
  7. 7.
    J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Dzhurakhalov and F. M. Peeters, Carbon 49, 3258 (2011).CrossRefGoogle Scholar
  10. 10.
    B. S. Pujari, S. Gusarov, M. Brett, and A. Kovalenko, Phys. Rev. B 84, 041402 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    J. Zhou, Q. Wang, Q. Sun, X. C. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 9, 3867 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    L. A. Chernozatonskii, P. B. Sorokin, A. G. Kvashnin, and D. G. Kvashnin, JETP Lett. 90, 134 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    S. Iijima, Nature 354, 56 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    D. Stojkovic, P. Zhang, and V. H. Crespi, Phys. Rev. Lett. 87, 125502 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    T. C. Fitzgibbons, M. Guthrie, E. Xu, V. H. Crespi, S. K. Davidowski, G. D. Cody, N. Alem, and J. V. Badding, Nature Mater. 14, 43 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    R. E. Roman, K. Kwan, and S. W. Cranford, Nano Lett. 15, 1585 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    H. Zhan, G. Zhang, V. B. C. Tan, Y. Cheng, J. M. Bell, Y.-W. Zhang, and Y. Gu, Nanoscale 8, 11177 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    E. Kaxiras and K. C. Pandey, Phys. Rev. Lett. 6, 2693 (1988).ADSCrossRefGoogle Scholar
  20. 20.
    M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).CrossRefGoogle Scholar
  21. 21.
    L. A. Openov and A. I. Podlivaev, Tech. Phys. Lett. 36, 31 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    A. I. Podlivaev and L. A. Openov, JETP Lett. 103, 185 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    A. I. Podlivaev and L. A. Openov, JETP Lett. 101, 173 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    G. V. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).ADSCrossRefGoogle Scholar
  25. 25.
    M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations