Advertisement

JETP Letters

, Volume 104, Issue 2, pp 88–93 | Cite as

Magnetostructural phase transitions in NiO and MnO: Neutron diffraction data

  • A. M. BalagurovEmail author
  • I. A. Bobrikov
  • S. V. Sumnikov
  • V. Yu. Yushankhai
  • N. Mironova-Ulmane
Condensed Matter

Abstract

Structural and magnetic phase transitions in NiO and MnO antiferromagnets have been studied by high-precision neutron diffraction. The experiments have been performed on a high-resolution Fourier diffractometer (pulsed reactor IBR-2), which has the record resolution for the interplanar distance and a high intensity in the region of large interplanar distances; as a result, the characteristics of both transitions have been determined simultaneously. It has been shown that the structural and magnetic transitions in MnO occur synchronously and their temperatures coincide within the experimental errors: T strT mag ≈ (119 ± 1) K. The measurements for NiO have been performed with powders with different average sizes of crystallites (~1500 nm and ~138 nm). It has been found that the transition temperatures differ by ~50 K: T str = (471 ± 3) K, T mag = (523 ± 2) K. It has been argued that a unified mechanism of the “unsplit” magnetic and structural phase transition at a temperature of T mag is implemented in MnO and NiO. Deviation from this scenario in the behavior of NiO is explained by the quantitative difference—a weak coupling between the magnetic and secondary structural order parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. G. Shull and J. S. Smart, Phys. Rev. 76, 1256 (1949).ADSCrossRefGoogle Scholar
  2. 2.
    H. P. Rooksby, Nature 152, 304 (1943).ADSCrossRefGoogle Scholar
  3. 3.
    B. T. M. Willis and H. P. Rooksby, Acta Crystallogr. 6, 827 (1953).CrossRefGoogle Scholar
  4. 4.
    W. L. Roth, Phys. Rev. 110, 1333 (1958).ADSCrossRefGoogle Scholar
  5. 5.
    D. Ter Haar and M. E. Lines, Phil. Trans. R. Soc. London A 254, 521 (1962), Phil. Trans. R. Soc. London A 255, 1 (1962).ADSCrossRefGoogle Scholar
  6. 6.
    P. W. Anderson, in Solid State Physics: Advances in Research and Applications, Vol. 14, Ed. by F. Seitz and D. Turnbull (Academic, New York, London, 1963).Google Scholar
  7. 7.
    A. Schrön, C. Rödl, and F. Bechstedt, Phys. Rev. B 86, 115134 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    M. Hutchings and E. Samuelsen, Phys. Rev. B 6, 3447 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    D. Köddeitzsch, W. Hergert, W. M. Temmerman, Z. Szotek, A. Ernst, and H. Winter, Phys. Rev. B 66, 064434 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    G. Pepy, J. Phys. Chem. Sol. 35, 433 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    I. Solovyev and K. Terakura, Phys. Rev. 58, 15496 (1998).CrossRefGoogle Scholar
  12. 12.
    M. E. Lines and E. D. Jones, Phys. Rev. A 139, 1313 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    M. E. Lines, Phys. Rep. 55, 133 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    T. Yildirim, A. B. Harris, and E. F. Shender, Phys. Rev. B 58, 3144 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    A. N. Ignatenko, A. A. Katanin, and V. Yu. Irkhin, JETP Lett. 87, 555 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, J. Phys. (France) 41, 1263 (1980).MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. P. Kantor, L. S. Dubrovinsky, N. A. Dubrovinskaia, I. Yu. Kantor, and I. N. Goncharenko, J. Alloys Compd. 402, 42 (2005).CrossRefGoogle Scholar
  18. 18.
    H. P. Rooksby, Acta Crystallogr. 1, 226 (1948).CrossRefGoogle Scholar
  19. 19.
    L. C. Bartel and B. Morosin, Phys. Rev. B 3, 1039 (1971).ADSCrossRefGoogle Scholar
  20. 20.
    A. J. Springthorpe, Phys. Status Solidi 24, K3 (1967).ADSCrossRefGoogle Scholar
  21. 21.
    M. W. Vernon, Phys. Status Solidi 37, K1 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    G. Srinivasan and M. S. Seehra, Phys. Rev. B 29, 6295 (1984).ADSCrossRefGoogle Scholar
  23. 23.
    T. Chatterji, G. J. McIntyre, and P.-A. Lindgard, Phys. Rev. B 79, 172403 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, J. Phys.: Conf. Ser. 93, 172403 (2007).Google Scholar
  25. 25.
    A. M. Balagurov, Neutron News 16, 8 (2005).CrossRefGoogle Scholar
  26. 26.
    V. B. Zlokazov and V. V. Chernyshev, J. Appl. Crystallogr. 25, 447 (1992).CrossRefGoogle Scholar
  27. 27.
    J. Rodriguez-Carvajal, Physica B 192, 55 (1993).ADSCrossRefGoogle Scholar
  28. 28.
    M. A. Carpenter, Z. Zhang, and Ch. J. Howard, J. Phys.: Condens. Matter 24, 156002 (2012).ADSGoogle Scholar
  29. 29.
    Z. Zhang, N. Church, S.-Ch. Lappe, M. Reinecker, A. Fuith, P. J. Saines, R. J. Harrison, W. Schranz, and M. A. Carpenter, J. Phys.: Condens. Matter 24, 215404 (2012).ADSGoogle Scholar
  30. 30.
    E. K. Salje and M. A. Carpenter, J. Phys.: Condens. Matter 23, 462202 (2011).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • A. M. Balagurov
    • 1
    Email author
  • I. A. Bobrikov
    • 1
  • S. V. Sumnikov
    • 1
  • V. Yu. Yushankhai
    • 1
  • N. Mironova-Ulmane
    • 2
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow regionRussia
  2. 2.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations