JETP Letters

, Volume 103, Issue 12, pp 752–755 | Cite as

Surface ablation оf aluminum and silicon by ultrashort laser pulses of variable width

  • D. A. Zayarny
  • A. A. Ionin
  • S. I. Kudryashov
  • S. V. Makarov
  • A. A. Kuchmizhak
  • O. B. Vitrik
  • Yu. N. Kulchin
Optics and Laser Physics

Abstract

Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2–12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. B 53, 1749 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, Phys. Rev. Lett. 80, 4076 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, Phys. Rev. Lett. 82, 2394 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    M. Mero, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    I. A. Artyukov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, and P. N. Saltuganov, JETP Lett. 99, 51 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    R. le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, Appl. Surf. Sci. 249, 322 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    N. A. Inogamov and Yu. V. Petrov, J. Exp. Theor. Phys. 110, 446 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, Ch. T. Kh. Nguen, A. A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kul’-chin, Pis’ma Zh. Eksp. Teor. Fiz. 103, 617 (2016).Google Scholar
  11. 11.
    Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, Orlando, 1998).Google Scholar
  12. 12.
    A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, JETP Lett. 94, 266 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    J. P. Girardeau-Montaut, M. Afif, C. Girardeau-Montaut, S. D. Moustaizis, and N. Papadogiannis, Appl. Phys. A 62, 3 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    S. Valette, Ph.D. thesis (Saint Etienne, 2003).Google Scholar
  15. 15.
    A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116, 347 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    D. H. Reitze, T. R. Zhang, Wm. M. Wood, and M. C. Downer, J. Opt. Soc. Am. B 7, 84 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, J. Appl. Phys. 99, 083101 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    S. Lee, D. Yang, and S. Nikumb, Appl. Surf. Sci. 254, 2996 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    J. F. Young and H. M. van Driel, Phys. Rev. B 26, 2147 (1982).Google Scholar
  20. 20.
    P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, J. Exp. Theor. Phys. 120, 946 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • D. A. Zayarny
    • 1
  • A. A. Ionin
    • 1
  • S. I. Kudryashov
    • 1
    • 2
    • 3
  • S. V. Makarov
    • 1
    • 5
  • A. A. Kuchmizhak
    • 3
    • 4
  • O. B. Vitrik
    • 3
    • 4
  • Yu. N. Kulchin
    • 3
  1. 1.Lebedev Physical InstituteMoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  3. 3.Institute for Automation and Control Processes, Far Eastern BranchRussian Academy of ScienceVladivostokRussia
  4. 4.Far Eastern Federal UniversityVladivostokRussia
  5. 5.ITMO UniversitySt. PetersburgRussia

Personalised recommendations