Advertisement

JETP Letters

, Volume 103, Issue 12, pp 780–784 | Cite as

Hamilton’s equations of motion of a vortex filament in the rotating Bose–Einstein condensate and their “soliton” solutions

  • V. P. Ruban
Condensed Matter

Abstract

The equation of motion of a quantized vortex filament in a trapped Bose–Einstein condensate [A. A. Svidzinsky and A. L. Fetter, Phys. Rev. A 62, 063617 (2000)] has been generalized to the case of an arbitrary anharmonic anisotropic rotating trap and presented in the variational form. For condensate density profiles of the form ρ = f(x 2 + y 2 + ReΨ(x + iy)) in the presence of the plane of symmetry y = 0, the solutions x(z) describing stationary vortices of U and S types coming to the surface and solitary waves have been found in quadratures. Analogous three-dimensional configurations of the vortex filament uniformly moving along the z axis have also been found in strictly cylindrical geometry. The dependence of solutions on the form of the function f(q) has been analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Fetter and A. A. Svidzinsky, J. Phys.: Condens. Matter 13, R135 (2001).ADSGoogle Scholar
  2. 2.
    A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    A. Recati, F. Zambelli, and S. Stringari, Phys. Rev. Lett. 86, 377 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    S. Sinha and Yv. Castin, Phys. Rev. Lett. 87, 190402 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    A. Aftalion and I. Danaila, Phys. Rev. A 69, 033608 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    I. Danaila, Phys. Rev. A 72, 013605 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    A. A. Svidzinsky and A. L. Fetter, Phys. Rev. A 62, 063617 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    A. Fetter, Phys. Rev. A 69, 043617 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    T.-L. Horng, S.-C. Gou, and T.-C. Lin, Phys. Rev. A 74, 041603 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    V. P. Ruban, Phys. Rev. E 64, 036305 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    A. Aftalion and T. Riviere, Phys. Rev. A 64, 043611 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    V. P. Ruban, Phys. Rev. E 68, 047302 (2003).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Garcia-Ripoll and V. Perez-Garcia, Phys. Rev. A 64, 053611 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    P. Rosenbusch, V. Bretin, and J. Dalibard, Phys. Rev. Lett. 89, 200403 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    A. Aftalion and I. Danaila, Phys. Rev. A 68, 023603 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations