Advertisement

JETP Letters

, Volume 103, Issue 10, pp 627–630 | Cite as

Brane realization of q-theory and the cosmological constant problem

  • F. R. Klinkhamer
  • G. E. Volovik
Astrophysics and Cosmology

Abstract

We discuss the cosmological constant problem using the properties of a freely suspended two-dimensional condensed-matter film, i.e., an explicit realization of a 2D brane. The large contributions of vacuum fluctuations to the surface tension of this film are cancelled in equilibrium by the thermodynamic potential arising from the conservation law for particle number. In short, the surface tension of the film vanishes in equilibrium due to a thermodynamic identity. This 2D brane can be generalized to a 4D brane with gravity. For the 4D brane, the analogue of the 2D surface tension is the 4D cosmological constant, which is also nullified in full equilibrium. The 4D brane theory provides an alternative description of the phenomenological q-theory of the quantum vacuum. As for other realizations of the vacuum variable q, such as the 4-form field-strength realization, the main ingredient is the conservation law for the variable q, which makes the vacuum a self-sustained system. For a vacuum within this class, the nullification of the cosmological constant takes place automatically in equilibrium. Out of equilibrium, the cosmological constant can be as large as suggested by naive estimates based on the summation of zero-point energies. In this brane description, q-theory also corresponds to a generalization of unimodular gravity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Weinberg, in Critical Dialogues in Cosmology, Ed. by N. Turok (World Scientific, Singapore, 1997), p. 195; arXiv:astro-ph/9610044.Google Scholar
  3. 3.
    S. Nobbenhuis, Found. Phys. 36, 613 (2006); arXiv: grqc/ 0411093.ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 77, 085015 (2008); arXiv:0711.3170.ADSCrossRefGoogle Scholar
  5. 5.
    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 78, 063528 (2008); arXiv:0806.2805.ADSCrossRefGoogle Scholar
  6. 6.
    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 79, 063527 (2009); arXiv:0811.4347.ADSCrossRefGoogle Scholar
  7. 7.
    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 80, 083001 (2009); arXiv:0905.1919.ADSCrossRefGoogle Scholar
  8. 8.
    F. R. Klinkhamer and G. E. Volovik, JETP Lett. 91, 259 (2010); arXiv:0907.4887 [hep-th].ADSCrossRefGoogle Scholar
  9. 9.
    G. E. Volovik, The Universe in a Helium Droplet (Oxford Univ. Press, Oxford, 2008).Google Scholar
  10. 10.
    E. I. Kats and V. V. Lebedev, Phys. Rev. E 91, 032415 (2015); arXiv:1501.06703.ADSCrossRefGoogle Scholar
  11. 11.
    M. J. Duff and P. van Nieuwenhuizen, Phys. Lett. B 94, 179 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    A. Aurilia, H. Nicolai, and P. K. Townsend, Nucl. Phys. B 176, 509 (1980).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. W. Hawking, Phys. Lett. B 134, 403 (1984).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. J. Duff, Phys. Lett. B 226, 36 (1989).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. J. Duncan and L. G. Jensen, Nucl. Phys. B 336, 100 (1990).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Bousso and J. Polchinski, J. High Energy Phys. 0006, 006 (2000); arXiv:hep-th/0004134.ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Aurilia and E. Spallucci, Phys. Rev. D 69, 105004 (2004); arXiv:hep-th/0402096.ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Z. C. Wu, Phys. Lett. B 659, 891 (2008); arXiv:0709.3314.ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    V. A. Rubakov, Phys. Usp. 44, 871 (2001); arXiv: hepph/ 0104152.ADSCrossRefGoogle Scholar
  20. 20.
    V. V. Lebedev and A. R. Muratov, Sov. Phys. JETP 68, 1011 (1989).Google Scholar
  21. 21.
    E. I. Kats and V. V. Lebedev, Fluctuational Effects in the Dynamics of Liquid Crystals (Springer, Berlin, 1993).Google Scholar
  22. 22.
    J. J. van der Bij, H. van Dam, and Y. J. Ng, Physica A 116, 307 (1982).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Zee, in High-Energy Physics, Proceedings of 20th Annual Orbis Scientiae, Miami, USA, January 17–21, 1983, Ed. by S. L. Mintz and A. Perlmutter (Plenum, New York, 1985), p. 211.Google Scholar
  24. 24.
    W. Buchmüller and N. Dragon, Phys. Lett. B 207, 292 (1988).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Henneaux and C. Teitelboim, Phys. Lett. B 222, 195 (1989).ADSCrossRefGoogle Scholar
  26. 26.
    F. R. Klinkhamer, arXiv:1604.03065 [hep-th].Google Scholar
  27. 27.
    M. Ahmed and R. D. Sorkin, Phys. Rev. D 87, 063515 (2013); arXiv:1210.2589.ADSCrossRefGoogle Scholar
  28. 28.
    D. V. Fursaev, Phys. Rev. D 59, 064020 (1999); arXiv:hep-th/9809049.ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Samuel and S. Sinha, Phys. Rev. Lett. 97, 161302 (2006); arXiv:cond-mat/0603804.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Low Temperature LaboratoryAalto UniversityAaltoFinland
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations