Advertisement

JETP Letters

, Volume 103, Issue 10, pp 653–657 | Cite as

Solitons in a third-order nonlinear Schrödinger equation with the pseudo-Raman scattering and spatially decreasing second-order dispersion

  • N. V. Aseeva
  • E. M. Gromov
  • I. V. Onosova
  • V. V. TyutinEmail author
Methods of Theoretical Physics

Abstract

Evolution of solitons is addressed in the framework of a third-order nonlinear Schrödinger equation (NLSE), including nonlinear dispersion, third-order dispersion and a pseudo-stimulated-Raman-scattering (pseudo- SRS) term, i.e., a spatial-domain counterpart of the SRS term, which is well known as a part of the temporal-domain NLSE in optics. In this context, it is induced by the underlying interaction of the high-frequency envelope wave with a damped low-frequency wave mode. In addition, spatial inhomogeneity of the second-order dispersion (SOD) is assumed. As a result, it is shown that the wavenumber downshift of solitons, caused by the pseudo-SRS, can be compensated with the upshift provided by decreasing SOD coefficients. Analytical results and numerical results are in a good agreement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Infeld and G. Rowlands, Nonlinear Waves, Solitons, and Chaos (Cambridge Univ. Press, Cambridge, 2000).CrossRefzbMATHGoogle Scholar
  2. 2.
    G. P. Agrawal, Nonlinear Fiber Optic (Academic, San Diego, 2001).Google Scholar
  3. 3.
    J. Yang, Solitons in Field Theory and Nonlinear Analysis (Springer, New York, 2001).CrossRefzbMATHGoogle Scholar
  4. 4.
    Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003).Google Scholar
  5. 5.
    L. A. Dickey, Soliton Equation and Hamiltonian Systems (World Scientific, New York, 2005).Google Scholar
  6. 6.
    B. A. Malomed, Soliton Management in Periodic Systems (Springer, New York, 2006).zbMATHGoogle Scholar
  7. 7.
    T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge Univ. Press, Cambridge, 2006).zbMATHGoogle Scholar
  8. 8.
    M. Sich, D. N. Krizhanovskii, M. S. Skolnick, A. V. Gorbach, R. Hartley, D. V. Skryabin, E. A. Cerda-Mendez, K. Biermann, R. Hey, and P. V. Santos, Nature Photon. 6, 50 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    M. Kauranen and A. V. Zayats, Nature Photon. 6, 737 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    E. A. Cerda-Mendez, D. Sarkar, D. N. Krizhanovskii, S. S. Gavrilov, K. Biermann, M. S. Skolnick, and P. V. Santos, Phys. Rev. Lett. 111, 146401 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).ADSMathSciNetGoogle Scholar
  12. 12.
    A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    K. Tajima, Opt. Lett. 12, 54 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    J. R. Oliviera and M. A. Moura, Phys. Rev. E 57, 4751 (1998).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    J. P. Gordon, Opt. Lett. 11, 662 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Kodama, J. Stat. Phys. 39, 597 (1985).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Y. Kodama and A. Hasegawa, IEEE J. Quant. Electron. 23, 510 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    C. E. Zaspel, Phys. Rev. Lett. 82, 723 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    B. Hong and D. Lu, Int. J. Nonlin. Sci. 7, 360 (2009).MathSciNetGoogle Scholar
  21. 21.
    V. I. Karpman, Eur. Phys. J. B 39, 341 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    E. M. Gromov and V. I. Talanov, J. Exp. Theor. Phys. 83, 73 (1996).ADSGoogle Scholar
  23. 23.
    E. M. Gromov and V. I. Talanov, Chaos 10, 551 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    E. M. Gromov, L. V. Piskunova, and V. V. Tyutin, Phys. Lett. A 256, 153 (1999).ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Obregon and Yu. A. Stepanyants, Phys. Lett. A 249, 315 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    M. Scalora, M. Syrchin, N. Akozbek, E. Y. Poliakov, G. D. Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, Phys. Rev. Lett. 95, 013902 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    S. C. Wen, Y. Wang, W. Su, Y. Xiang, X. Fu, and D. Fan, Phys. Rev. E 73, 036617 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    M. Marklund, P. K. Shukla, and L. Stenflo, Phys. Rev. E 73, 037601 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    N. L. Tsitsas, R. I. Kourakis, P. G. Kevrekidis, and D. J. Frantzeskakis, Phys. Rev. E 79, 037601 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    Y. S. Kivshar, Phys. Rev. A 42, 1757 (1990).ADSCrossRefGoogle Scholar
  31. 31.
    Y. S. Kivshar and B. A. Malomed, Opt. Lett. 18, 485 (1993).ADSCrossRefGoogle Scholar
  32. 32.
    B. A. Malomed and R. S. Tasgal, J. Opt. Soc. Am. B 15, 162 (1998).ADSCrossRefGoogle Scholar
  33. 33.
    F. Biancalama, D. V. Skrybin, and A. V. Yulin, Phys. Rev. E 70, 011615 (2004).Google Scholar
  34. 34.
    R.-J. Essiambre and G. P. Agrawal, J. Opt. Soc. Am. B 14, 314 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    R.-J. Essiambre and G. P. Agrawal, J. Opt. Soc. Am. B 14, 323 (1997).ADSCrossRefGoogle Scholar
  36. 36.
    A. Andrianov, S. Muraviev, A. Kim, and A. Sysoliatin, Laser Phys. 17, 1296 (2007).ADSCrossRefGoogle Scholar
  37. 37.
    S. Chernikov, E. Dianov, D. Richardson, and D. Payne, Opt. Lett. 18, 476 (1993).ADSCrossRefGoogle Scholar
  38. 38.
    E. M. Gromov and B. A. Malomed, J. Plasma Phys. 79, 1057 (2013).ADSCrossRefGoogle Scholar
  39. 39.
    E. M. Gromov and B. A. Malomed, Opt. Commun. 320, 88 (2014).ADSCrossRefGoogle Scholar
  40. 40.
    V. E. Zakharov, Sov. Phys. JETP 35, 908 (1972).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • N. V. Aseeva
    • 1
  • E. M. Gromov
    • 1
  • I. V. Onosova
    • 1
  • V. V. Tyutin
    • 1
    Email author
  1. 1.National Research University Higher School of EconomicsNizhny NovgorodRussia

Personalised recommendations