Advertisement

JETP Letters

, Volume 103, Issue 9, pp 582–587 | Cite as

Theoretical treatment of pulsed Overhauser dynamic nuclear polarization: Consideration of a general periodic pulse sequence

  • E. A. Nasibulov
  • A. S. Kiryutin
  • A. V. Yurkovskaya
  • H. -M. Vieth
  • K. L. Ivanov
Condensed Matter

Abstract

A general theoretical approach to pulsed Overhauser-type dynamic nuclear polarization (DNP) is presented. Dynamic nuclear polarization is a powerful method to create non-thermal polarization of nuclear spins, thereby enhancing their nuclear magnetic resonance signals. The theory presented can treat pulsed microwave irradiation of electron paramagnetic resonance transitions for periodic pulse sequences of general composition. Dynamic nuclear polarization enhancement is analyzed in detail as a function of the microwave pulse length for rectangular pulses and pulses with finite rise time. Characteristic oscillations of the DNP enhancement are found when the pulse-length is stepwise increased, originating from coherent motion of the electron spins driven by the pulses. Experimental low-field DNP data are in very good agreement with this theoretical approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Griesinger, M. Bennati, H.-M. Vieth, C. Luchinat, G. Parigi, P. Hofer, F. Engelke, S. J. Glaser, V. Denysenkov, and T. F. Prisner, Prog. Nucl. Magn. Reson. Spectr. 64, 4 (2012).CrossRefGoogle Scholar
  2. 2.
    T. Maly, G. T. Debelouchina, V. S. Bajaj, K.-N. Hu, C.-G. Joo, M. L. Mak-Jurkauskas, J. R. Sirigiri, P. C. A. van der Wel, J. Herzfeld, R. J. Temkin, and R. G. Griffin, J. Chem. Phys. 128, 052211 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Atsarkin, Sov. Phys. Usp. 21, 725 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    V. A. Atsarkin, J. Phys.: Conf. Ser. 324, 012003 (2011).ADSGoogle Scholar
  5. 5.
    K. H. Hausser and D. Stehlik, in Advances in Magnetic Resonance, Ed. by J. S. Waugh (Academic, New York, 1968), p. 79.Google Scholar
  6. 6.
    M. Alecci and D. J. Lurie, J. Magn. Reson. 138, 313 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    S. E. Korchak, A. S. Kiryutin, K. L. Ivanov, A. V. Yurkovskaya, Y. A. Grishin, H. Zimmermann, and H.-M. Vieth, Appl. Magn. Reson. 37, 515 (2010).CrossRefGoogle Scholar
  8. 8.
    E. A. Nasibulov, K. L. Ivanov, A. V. Yurkovskaya, and H.-M. Vieth, Phys. Chem. Chem. Phys. 14, 6459 (2012).CrossRefGoogle Scholar
  9. 9.
    B. F. Melton, V. L. Pollak, T. W. Mayes, and B. L. Willis, J. Magn. Reson. Ser. A 117, 164 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    B. D. Armstrong and S. Han, J. Chem. Phys. 127, 104508 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    M.-T. Türke, I. Tkach, M. Reese, P. Höfer, and M. Bennati, Phys. Chem. Chem. Phys. 12, 5893 (2010).CrossRefGoogle Scholar
  12. 12.
    B. D. Armstrong and S. Han, J. Chem. Phys. 127, 104508 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    N. Enkin, G. Liu, M. C. Gimenez-Lopez, K. Porfyrakis, I. Tkach, and M. Bennati, Phys. Chem. Chem. Phys. 17, 11144 (2015).CrossRefGoogle Scholar
  14. 14.
    A. S. Kiryutin, A. N. Pravdivtsev, K. L. Ivanov, Y. A. Grishin, H.-M. Vieth, and A. V. Yurkovskaya, J. Magn. Reson. 263, 79 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • E. A. Nasibulov
    • 1
    • 2
  • A. S. Kiryutin
    • 1
    • 2
  • A. V. Yurkovskaya
    • 1
    • 2
  • H. -M. Vieth
    • 1
    • 3
  • K. L. Ivanov
    • 1
    • 2
  1. 1.International Tomography Center, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Freie Universität BerlinBerlinGermany

Personalised recommendations