Advertisement

JETP Letters

, Volume 103, Issue 9, pp 568–572 | Cite as

Predictability of the appearance of anomalous waves at sufficiently small Benjamin–Feir indices

  • V. P. Ruban
Plasma, Hydro- and Gas Dynamics

Abstract

The numerical simulation of the nonlinear dynamics of random sea waves at sufficiently small Benjamin–Feir indices and its comparison with the linear dynamics (at the coincidence of spatial Fourier harmonics near a spectral peak at a certain time t p) indicate that the appearance of a rogue wave can be predicted in advance. If the linear approximation shows the presence of a sufficiently extensive and/or high group of waves in the near future after t p, an anomalous wave is almost necessarily formed in the nonlinear model. The interval of reliable forecasting covers several hundred wave periods, which can be quite sufficient in practice for, e.g., avoiding the meeting of a ship with a giant wave.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Kharif and E. Pelinovsky, Eur. J. Mech. B: Fluids 22, 603 (2003).MathSciNetCrossRefGoogle Scholar
  2. 2.
    K. Dysthe, H. E. Krogstad, and P. Müller, Ann. Rev. Fluid Mech. 40, 287 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, Phys. Rep. 528, 47 (2013).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    E. Pelinovsky and C. Kharif, Eur. J. Mech. B: Fluids 25, 535 (2006).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    N. Akhmediev and E. Pelinovky, Eur. Phys. J. Spec. Top. 185, 1 (2010).CrossRefGoogle Scholar
  6. 6.
    I. Nikolkina and I. Didenkulova, Nat. Hazards Earth Syst. Sci. 11, 2913 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    A. L. Pleskachevsky, S. Lehner, and W. Rosenthal, Ocean Dyn. 62, 1335 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    S. Birkholz, C. Brée, A. Demircan, and G. Steinmeyer, Phys. Rev. Lett. 114, 213901 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    N. Akhmediev, J. M. Soto-Crespo, A. Ankiewicz, and N. Devine, Phys. Lett. A 375, 2999 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, and J. M. Dudley, Phys. Lett. A 375, 541 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    C. Bayindir, Phys. Lett. A 380, 156 (2016).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Chabchoub, S. Neumann, N. P. Hoffmann, and N. Akhmediev, J. Geophys. Res. 117, C00J03 (2012).ADSGoogle Scholar
  13. 13.
    E. Pelinovsky, E. Shurgalina, and N. Chaikovskaya, Nat. Hazards Earth Syst. Sci. 11, 127 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    A. Slunyaev, E. Pelinovsky, and C. Guedes Soares, Appl. Ocean Res. 27, 12 (2005).CrossRefGoogle Scholar
  15. 15.
    A. Slunyaev, E. Pelinovsky, and C. Guedes Soares, J. Offshore Mech. Arct. Eng. 136, 011302 (2014).CrossRefGoogle Scholar
  16. 16.
    V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).ADSCrossRefGoogle Scholar
  17. 17.
    T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).ADSCrossRefGoogle Scholar
  18. 18.
    M. Onorato, A. R. Osborne, and M. Serio, Phys. Fluids 14, L25 (2002).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    O. Gramstad and K. Trulsen, J. Fluid Mech. 582, 463 (2007).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Onorato, T. Waseda, A. Toffoli, L. Cavaleri, O. Gramstad, P. A. E. M. Janssen, T. Kinoshita, J. Monbaliu, N. Mori, A. R. Osborne, M. Serio, C. T. Stansberg, H. Tamura, and K. Trulsen, Phys. Rev. Lett. 102, 114502 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    M. Onorato, L. Cavaleri, S. Fouques, O. Gramstad, P. A. E. M. Janssen, J. Monbaliu, A. R. Osborne, C. Pakozdi, M. Serio, C. T. Stansberg, A. Toffoli, and K. Trulsen, J. Fluid Mech. 627, 235 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    A. Toffoli, O. Gramstad, K. Trulsen, J. Monbaliu, E. Bitner-Gregersen, and M. Onorato, J. Fluid Mech. 664, 313 (2010).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B: Fluids 21, 283 (2002).MathSciNetCrossRefGoogle Scholar
  24. 24.
    A. I. Dyachenko and V. E. Zakharov, JETP Lett. 81, 255 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    V. E. Zakharov, A. I. Dyachenko, and A. O. Prokofiev, Eur. J. Mech. B: Fluids 25, 677 (2006).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Phys. Rev. Lett. 106, 204502 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    M. Onorato, A. R. Osborne, and M. Serio, Phys. Rev. Lett. 96, 014503 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    P. K. Shukla, I. Kourakis, B. Eliasson, M. Marklund, and L. Stenflo, Phys. Rev. Lett. 97, 094501 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    V. P. Ruban, Phys. Rev. E 74, 036305 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    V. P. Ruban, Phys. Rev. Lett. 99, 044502 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    V. P. Ruban, J. Exp. Theor. Phys. 110, 529 (2010).CrossRefGoogle Scholar
  32. 32.
    V. P. Ruban, JETP Lett. 97, 686 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    V. P. Ruban, J. Exp. Theor. Phys. 120, 925 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    V. P. Ruban, JETP Lett. 102, 650 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    V. P. Ruban and J. Dreher, Phys. Rev. E 72, 066303 (2005).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    V. P. Ruban, Eur. Phys. J. Spec. Top. 185, 17 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations