Advertisement

JETP Letters

, Volume 103, Issue 9, pp 577–581 | Cite as

Spectral properties of plasmon resonances in a random impedance network model of binary nanocomposites

  • N. A. Olekhno
  • Y. M. Beltukov
  • D. A. Parshin
Condensed Matter

Abstract

One of the methods for the description of plasmon resonances in disordered metal–dielectric nanocomposites represents an initial composite as an electric network in the form of a lattice whose bonds are randomly arranged complex impedances. In this work, a general method is used to describe resonances in binary networks consisting of two types of impedances, which are arbitrary functions of the frequency [Th. Jonckheere and J.M. Luck, J. Phys. A 31, 3687 (1998)]. The generalization of the low-frequency LC model where metal and dielectric regions in the lattice are replaced by inductive bonds L and capacitive bonds C d, respectively, has been considered. To analyze the spectrum of resonances in the entire optical region, a more accurate model involves the replacement of the metal regions by bonds in the form of parallel LC circuits with the resonant frequency equal to the plasma frequency of the metal ωp. The spectral properties of this model, as well as the model of a nanocomposite consisting of two metals with different plasma frequencies, have been considered. Analytical relations between the spectra of all such systems and the spectra of the initial LC model have been established in the matrix representation. General expressions describing the dependence of the resonance spectrum of composites with arbitrary geometry on the permittivity of the matrix have been obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).Google Scholar
  2. 2.
    A. K. Sarychev and V. M. Shalaev, Phys. Rep. 335, 275 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    F. Brouers, S. Blacher, and A. K. Sarychev, in Fractal Reviews in the Natural and Applied Sciences, Ed. by M. M. Novak (Chapman and Hall, London, 1995), p. 237.Google Scholar
  4. 4.
    F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, Phys. Rev. B 55, 13234 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    R. S. Koss and D. Stroud, Phys. Rev. B 35, 9004 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    X. C. Zeng, P. M. Hui, and D. Stroud, Phys. Rev. B 39, 1063 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    J. P. Clerc, G. Giraud, J. M. Laugier, and J. M. Luck, Adv. Phys. 39, 191 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    X. Zhang and D. Stroud, Phys. Rev. B 48, 6658 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    S. O. Boyarintsev and A. K. Sarychev, J. Exp. Theor. Phys. 113, 963 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    Th. Jonckheere and J. M. Luck, J. Phys. A 31, 3687 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    J. Stäring, B. Mehlig, Y. V. Fyodorov, and J. M. Luck, Phys. Rev. E 67, 047101 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    N. A. Olekhno, Ya. M. Beltukov, and D. A. Parshin, Phys. Solid State 57, 2479 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge Univ. Press, Cambridge, 1990).MATHGoogle Scholar
  14. 14.
    J. M. Ortega, Matrix Theory: A Second Course (Springer Science and Business Media, New York, 1987).CrossRefMATHGoogle Scholar
  15. 15.
    A. L. Efros and B. I. Shklovskii, Phys. Status Solidi B 76, 475 (1976).ADSCrossRefGoogle Scholar
  16. 16.
    E. M. Baskin, M. V. Entin, A. K. Sarychev, and A. A. Snarskii, Physica A 242, 49 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • N. A. Olekhno
    • 1
    • 2
  • Y. M. Beltukov
    • 1
  • D. A. Parshin
    • 3
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Academic University, Nanotechnology Research and Education CentreRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations