JETP Letters

, Volume 103, Issue 8, pp 535–538 | Cite as

Non-adiabatic geometric phases and dephasing in an open quantum system

  • A. E. Svetogorov
  • Yu. Makhlin
Methods of Theoretical Physics


We analyze the influence of a dissipative environment on geometric phases in a quantum system subject to non-adiabatic evolution. We find dissipative contributions to the acquired phase and modification of dephasing, considering the cases of both weak short-correlated noise and slow quasi-stationary noise. Motivated by recent experiments, we find the leading non-adiabatic corrections to the results, known for the adiabatic limit.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. V. Berry, Proc. R. Soc. London 392, 45 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    Geometric Phases in Physics, Ed. by A. Shapere and F. Wilczek (World Scientific, Singapore, 1989).Google Scholar
  3. 3.
    Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R. S. Whitney, Yu. Makhlin, A. Shnirman, and Y. Gefen, Phys. Rev. Lett. 94, 070407 (2005).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. V. Syzranov and Yu. Makhlin, in Electron Transport in Nanosystems, Ed. by J. Bonca and S. Kruchinin (Springer, Berling, 2008), p. 301.Google Scholar
  6. 6.
    R. S. Whitney, A. Shnirman, and Y. Gefen, Phys. Rev. Lett. 100, 126806 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    D. Suter, G. C. Chingas, R. A. Harris, and A. Pines, Mol. Phys. 61, 1327 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Göppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, Science 318, 1889 (2007).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Berger, M. Pechal, A. A. Abdumalikov, C. Eichler, L. Steffen, A. Fedorov, A. Wallraff, and S. Filipp, Phys. Rev. A 87, 060303(R) (2013).ADSCrossRefGoogle Scholar
  10. 10.
    S. Berger, M. Pechal, P. Kurpiers, A. A. Abdumalikov, C. Eichler, J. A. Mlynek, A. Shnirman, Y. Gefen, A. Wallraff, and S. Filipp, Nature Commun. 6, 8757 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    Yu. Makhlin, G. Schön, and A. Shnirman, in New Directions in Mesoscopic Physics (Towards Nanoscience), Ed. by R. Fazio, V. F. Gantmakher, and Y. Imry (Kluwer, Dordrecht, 2003), p. 197.Google Scholar
  12. 12.
    H. Schoeller and G. Schön, Phys. Rev. B 50, 18436 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    G. de Chiara and G. M. Palma, Phys. Rev. Lett. 91, 090404 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow regionRussia

Personalised recommendations