Advertisement

JETP Letters

, Volume 103, Issue 7, pp 489–493 | Cite as

Two new integrable cases of two-dimensional quantum mechanics with a magnetic field

  • V. G. Marikhin
Methods of Theoretical Physics

Abstract

Two integrable cases of two-dimensional Schrödinger equation with a magnetic field are proposed. Using the polar coordinates and the symmetrical gauge, we will obtain solutions of these equations through biconfluent and confluent Heun functions. The quantization rules will be derived for both systems under consideration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1991, 3rd ed.).Google Scholar
  2. 2.
    L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Schrödinger, Proc. R. Irish Acad. A 46, 9 (1940).Google Scholar
  4. 4.
    E. Schrödinger, Proc. R. Irish Acad. A 46, 183 (1941).Google Scholar
  5. 5.
    E. Schrödinger, Proc. R. Irish Acad. A 47, 53 (1941).Google Scholar
  6. 6.
    A. M. Ishkhanyan, Eur. Phys. Lett. 112, 10006 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Turbiner, Comm. Math. Phys. 118, 467 (1988).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Ushveridze, Sov. J. Part. Nucl. 20, 185 (1989).MathSciNetGoogle Scholar
  9. 9.
    M. A. Shifman, Int. J. Mod. Phys. A 4, 2897 (1989).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. V. Ferapontov and A. P. Veselov, J. Math. Phys. 42, 590 (2001).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, Sov. Math. Dokl. 17, 947 (1976).Google Scholar
  12. 12.
    S. P. Novikov and A. P. Veselov, Am. Math. Soc. Transl. 179, 109 (1997).MathSciNetGoogle Scholar
  13. 13.
    J. Berube and P. Winternitz, J. Math. Phys. 45, 1959 (2004).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    K. Heun, Math. Ann. 33, 161 (1889).MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, Toronto, London, 1955), Vol. 3.zbMATHGoogle Scholar
  16. 16.
    A. Decarreau, M. Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Roneaux, Ann. Soc. Bruxelles 92, 53 (1978).Google Scholar
  17. 17.
    A. Decarreau, P. Maroni, and A. Robert, Ann. Soc. Bruxelles 92, 151 (1978).MathSciNetGoogle Scholar
  18. 18.
    Heun’s Differential Equations, Ed. by A. Ronveaux (Oxford Univ. Press, New York, 1995).Google Scholar
  19. 19.
    P. P. Fiziev, J. Phys. A: Math. Theor. 43, 035203 (2010).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    V. G. Marikhin, Theor. Math. Phys. 177, 1352 (2013).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations