Advertisement

JETP Letters

, Volume 103, Issue 2, pp 82–86 | Cite as

Picosecond time of spontaneous emission in plasmonic patch nanoantennas

  • S. P. Eliseev
  • A. G. Vitukhnovsky
  • D. A. Chubich
  • N. S. Kurochkin
  • V. V. Sychev
  • A. A. Marchenko
Optics and Laser Physics

Abstract

A significant (to 12 ps) decrease in the lifetime of excited states of quantum emitters in the form of three-layer colloidal quantum dots (CdSe/CdS/ZnS) placed in an aluminum–triangular silver nanoprism cavity (patch nanoantenna) has been experimentally demonstrated. The decrease in the time of spontaneous emission of quantum dots has been explained by the Purcell effect. The Purcell coefficient for an emitter in the resonator has been found to be 625. Such a significant increase in the rate of spontaneous emission in the patch nanoantenna is due to an increase in the local density of photon states in the plasmonic cavity.

Keywords

JETP Letter Spontaneous Emission Extinction Spectrum Patch Antenna Photon State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Vitukhnovskii, A. A. Vashchenko, V. S. Lebedev, A. S. Selyukov, R. B. Vasil’ev, and M. S. Sokolikova, JETP Lett. 100, 86 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    R. Zhao, M. Gong, H. Zhu, Y. Chen, Y. Tang, and T. Lu, Nanoscale 6, 9273 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    A. G. Vitukhnovsky, A. S. Shul’ga, S. A. Ambrozevich, E. M. Khokhlov, R. B. Vasiliev, D. N. Dirin, and V. I. Yudson, Phys. Lett. A 373, 2287 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    A. G. Vitukhnovsky, V. S. Lebedev, A. S. Selyukov, A. A. Vashchenko, R. B. Vasiliev, and M. S. Sokolikova, Chem. Phys. Lett. 619, 185 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    J. Y. Kim, O. Voznyy, D. Zhitomirsky, and E. H. Sargent, Adv. Mater. 25, 4986 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Gupta and E. Waks, Opt. Express 22, 3013 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev. 69, 37 (1946).ADSCrossRefGoogle Scholar
  8. 8.
    V. S. C. M. Rao and S. Hughes, Phys. Rev. Lett. 99, 193901 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, Nature 445, 896 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaitre, and P. Senellart, Nature Commun. 4, 1425 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, Nature Mater. 13, 279 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    A. David, H. Benisty, and C. Weisbuch, Photon. Rep. Prog. Phys. 75, 126501 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    C. T. Yuan, Y. C. Wang, H. W. Cheng, H. S. Wang, M. Y. Kuo, M. H. Shih, and J. Tang, J. Phys. Chem. C 117, 12762 (2013).CrossRefGoogle Scholar
  14. 14.
    C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, Nano Lett. 13, 1516 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, Nano Lett. 1, 1049 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, Nano Lett. 11, 4907 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    R. Esteban, T. V. Teperik, and J. J. Greffet, Phys. Rev. Lett. 104, 026802 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    J. Z. Niu, H. Shen, C. Zhou, W. Xu, X. Li, H. Wang, S. Lou, Z. Du, and L. S. Li, Dalton Trans. 39, 3308 (2010).CrossRefGoogle Scholar
  19. 19.
    S. Wei and A. Zunger, Appl. Phys. Lett. 72, 2011 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    S. Coe, W. Woo, M. Bawendi, and V. Bulovic, Nature 420, 800 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2010; Pan Stanford, Singapore, 2011).Google Scholar
  22. 22.
    M. R. Langille, M. L. Personick, and C. A. Mirkin, Angew. Chem. Int. Ed. 52, 13910 (2013).CrossRefGoogle Scholar
  23. 23.
    J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    Z. Wu and Y. Zheng, Plasmonics (Springer Science, New York, 2015).Google Scholar
  26. 26.
    G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, Nature Photon. 8, 835 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • S. P. Eliseev
    • 1
  • A. G. Vitukhnovsky
    • 1
    • 2
  • D. A. Chubich
    • 1
  • N. S. Kurochkin
    • 1
    • 2
  • V. V. Sychev
    • 1
    • 2
  • A. A. Marchenko
    • 3
  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Institute of PhysicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations