Advertisement

JETP Letters

, Volume 102, Issue 10, pp 668–673 | Cite as

Monte Carlo simulation of multilayer magnetic structures and calculation of the magnetoresistance coefficient

  • V. V. PrudnikovEmail author
  • P. V. Prudnikov
  • D. E. Romanovskii
Condensed Matter

Abstract

The Monte Carlo study of three-layer and spin-valve magnetic structures with giant magnetoresistance effects has been performed with the application of the Heisenberg anisotropic model to the description of the magnetic properties of thin ferromagnetic films. The dependences of the magnetic characteristics on the temperature and external magnetic field have been obtained for the ferromagnetic and antiferromagnetic configurations of these structures. A Monte Carlo method for determining the magnetoresistance coefficient has been developed. The magnetoresistance coefficient has been calculated for three-layer and spin-valve magnetic structures at various thicknesses of ferromagnetic films. It has been shown that the calculated temperature dependence of the magnetoresistance coefficient is in good agreement with experimental data obtained for the Fe(001)/Cr(001) multilayer structure and the CFAS/Ag/CFAS/IrMn spin valve based on the Co2FeAl0.5Si0.5 (CFAS) Heusler alloy.

Keywords

External Magnetic Field JETP Letter Exchange Coupling Heusler Alloy Monte Carlo Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, Rep. Prog. Phys. 71, 056501 (2008).CrossRefADSGoogle Scholar
  2. 2.
    Ultrathin Magnetic Structures, Ed. by J. A. C. Bland and B. Heinrich (Springer, Berlin, Heidelberg, 1994, 2005), Vols. 1–4.Google Scholar
  3. 3.
    V. V. Ustinov, M. A. Milyaev, and L. I. Naumova, SPIN 04, 1440001 (2014).CrossRefGoogle Scholar
  4. 4.
    M. N. Baibich, J. M. Broto, A. Fert, F. N. van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).CrossRefADSGoogle Scholar
  5. 5.
    G. Binash, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).CrossRefADSGoogle Scholar
  6. 6.
    A. Barthelemy and A. Fert, Phys. Rev. B 43, 13124 (1991).CrossRefADSGoogle Scholar
  7. 7.
    M. Julliere, Phys. Lett. A 54, 225 (1975).CrossRefADSGoogle Scholar
  8. 8.
    T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).Google Scholar
  9. 9.
    R. C. Sousa, J. J. Sun, V. Soares, P. P. Freitas, A. Kling, M. F. Silva, and J. C. Soares, Appl. Phys. Lett. 73, 3288 (1998).CrossRefADSGoogle Scholar
  10. 10.
    Y. Li and K. Baberschke, Phys. Rev. Lett. 68, 1208 (1992).CrossRefADSGoogle Scholar
  11. 11.
    F. Huang, M. T. Kief, G. J. Mankey, and R. F. Willis, Phys. Rev. B 49, 3962 (1994).CrossRefADSGoogle Scholar
  12. 12.
    V. V. Prudnikov, A. N. Vakilov, and P. V. Prudnikov, Phase Transitions and Methods of Their Simulation (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  13. 13.
    P. V. Prudnikov, V. V. Prudnikov, and M. A. Medvedeva, JETP Lett. 100, 446 (2014).CrossRefADSGoogle Scholar
  14. 14.
    P. V. Prudnikov, V. V. Prudnikov, M. A. Menshikova, and N. I. Piskunova, J. Magn. Magn. Mater. 387, 77 (2015).CrossRefADSGoogle Scholar
  15. 15.
    B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev. B 43, 1297 (1991).CrossRefADSGoogle Scholar
  16. 16.
    T. Furubayashi, K. Kodama, H. Sukegawa, Y. Takahashi, K. Inomata, and K. Hono, Appl. Phys. Lett. 93, 122507 (2008).CrossRefADSGoogle Scholar
  17. 17.
    M. A. M. Gijs and G. E. W. Bauer, Adv. Phys. 46, 285 (1997).CrossRefADSGoogle Scholar
  18. 18.
    J. Bass and W. P. Pratt, J. Magn. Magn. Mater. 200, 274 (1999).CrossRefADSGoogle Scholar
  19. 19.
    J. Mathon, Contemp. Phys. 32, 143 (1991).CrossRefADSGoogle Scholar
  20. 20.
    S. Zhang and P. M. Levy, J. Appl. Phys. 69, 4786 (1991).CrossRefADSGoogle Scholar
  21. 21.
    G. E. W. Bauer, Phys. Rev. Lett. 69, 1676 (1992).CrossRefADSGoogle Scholar
  22. 22.
    T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).CrossRefADSGoogle Scholar
  23. 23.
    V. V. Prudnikov, P. V. Prudnikov, and M. V. Mamonova, Quantum-Statistical Theory of Solids (Omsk. Univ., Omsk, 2014) [in Russian].Google Scholar
  24. 24.
    H. C. Kandpal, G. H. Fecher, and C. Felser, J. Phys. D 40, 1507 (2007).CrossRefADSGoogle Scholar
  25. 25.
    R. Farshchi and M. Ramsteiner, J. Appl. Phys. 113, 191101 (2013).CrossRefADSGoogle Scholar
  26. 26.
    N. Tezuka, N. Ikeda, F. Mitsuhashi, and S. Sugimoto, Appl. Phys. Lett. 94, 162504 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • V. V. Prudnikov
    • 1
    Email author
  • P. V. Prudnikov
    • 1
  • D. E. Romanovskii
    • 1
  1. 1.Omsk State UniversityOmskRussia

Personalised recommendations