Advertisement

JETP Letters

, Volume 102, Issue 10, pp 688–692 | Cite as

Formation of virtual isthmus: A new scenario of spiral wave death after a decrease in excitability

  • I. S. Erofeev
  • K. I. AgladzeEmail author
Biophysics

Abstract

Termination of rotating (spiral) waves or reentry is crucial when fighting with the most dangerous cardiac tachyarrhythmia. To increase the efficiency of the antiarrhythmic drugs as well as finding new prospective ones it is decisive to know the mechanisms how they act and influence the reentry dynamics. The most popular view on the mode of action of the contemporary antiarrhythmic drugs is that they increase the core of the rotating wave (reentry) to that extent that it is not enough space in the real heart for the reentry to exist. Since the excitation in cardiac cells is essentially change of the membrane potential, it relies on the functioning of the membrane ion channels. Thus, membrane ion channels serve as primary targets for the substances, which may serve as antiarrhythmics. At least, the entire group of antiarrhythmics class I (modulating activity of sodium channels) and partially class IV (modulating activity of calcium channels) are believed to destabilize and terminate reentry by decreasing the excitability of cardiac tissue. We developed an experimental model employing cardiac tissue culture and photosensitizer (AzoTAB) to study the process of the rotating wave termination while decreasing the excitability of the tissue. A new scenario of spiral wave cessation was observed: an asymmetric growth of the rotating wave core and subsequent formation of a virtual isthmus, which eventually caused a conduction block and the termination of the reentry.

Keywords

JETP Letter Azobenzene Excitation Wave Conduction Block Spiral Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Prigogine and G. Nicolis, Quart. Rev. Bio. 4, 107 (1971).CrossRefGoogle Scholar
  2. 2.
    V. I. Krinsky, Pharm. Ther. B 3, 539 (1978).Google Scholar
  3. 3.
    A. M. Pertsov, J. M. Davidenko, R. Salomonsz, W. T. Baxter, and J. Jalife, Circ. Res. 72, 631 (1993).CrossRefGoogle Scholar
  4. 4.
    J. Jalife, A. V. Panfilov, W. T. Baxter, C. Cabo, J. M. Davidenko, and A. M. Pertsov, Science 270, 1222 (1995).CrossRefADSGoogle Scholar
  5. 5.
    J. Jalife, Ann. Rev. Phys. 62, 25 (2000).CrossRefGoogle Scholar
  6. 6.
    A. T. Winfree, Science 266, 1003 (1994).CrossRefADSGoogle Scholar
  7. 7.
    V. G. Fast, A. M. Pertsov, and T. B. Yefimova, Kardiologiya 30, 93 (1990).Google Scholar
  8. 8.
    H. Inoue, T. Yamashita, A. Nozaki, and T. Sugimoto, J. Am. Coll. Cardiol. 18, 1098 (1991).CrossRefGoogle Scholar
  9. 9.
    A. M. Pertsov, R. N. Khramov, and A. V. Panfilov, Biofizika 26, 1077 (1981).Google Scholar
  10. 10.
    Z. L. Qu and J. N. Weiss, Am. J. Physiol.: Heart Circ. Physiol. 289, H1692 (2005).Google Scholar
  11. 11.
    M. Yamazaki, H. Honjo, H. Nakagawa, Y. S. Ishiguro, Y. Okuno, M. Amino, I. Sakuma, K. Kamiya, and I. Kodama, Am. J. Physiol.: Heart Circ. Physiol. 292, H539 (2007).Google Scholar
  12. 12.
    J. Jalife, J. M. B. Anumonwo, and O. Berenfeld, Toward an Understanding of the Molecular Mechanisms of Ventricular Fibrillation (Kluwer Academic, Dordrecht, 2003), p. 119.Google Scholar
  13. 13.
    V. I. Krinsky, Pharmacol. Therapeut. B 3, 539 (1978).Google Scholar
  14. 14.
    A. Defauw, P. Dawyndt, and A. V. Panfilov, Phys. Rev. E 88, 062703 (2013).CrossRefADSGoogle Scholar
  15. 15.
    A. Defauw, N. Vandersickel, P. Dawyndt, and A. V. Panfilov, Am. J. Physiol.: Heart Circ. Physiol. 307, H1456 (2014).Google Scholar
  16. 16.
    Z. Y. Lim, B. Maskara, F. Aguel, R. Emokpae, and L. Tung, Circulation 114, 2113 (2006).CrossRefGoogle Scholar
  17. 17.
    J. W. Lin, L. Garber, Y. R. Qi, M. G. Chang, J. Cysyk, and L. Tung, Am. J. Physiol.: Heart Circ. Physiol. 294, H1501 (2008).Google Scholar
  18. 18.
    G. Huyet, C. Dupont, T. Corriol, and V. Krinsky, Int. J. Bifurcat. Chaos 8, 1315 (1998).CrossRefGoogle Scholar
  19. 19.
    S. Takagi, A. Pumir, D. Pazo, I. Efimov, V. Nikolski, and V. Krinsky, Phys. Rev. Lett. 93, 058101 (2004).CrossRefADSGoogle Scholar
  20. 20.
    M. Yamazaki, H. Honjo, T. Ashihara, M. Harada, I. Sakuma, K. Nakazawa, N. Trayanova, M. Horie, J. Kalifa, J. Jalife, K. Kamiya, and I. Kodama, Heart Rhythm 9, 107 (2012).CrossRefGoogle Scholar
  21. 21.
    S. V. Pandit and J. Jalife, Circ. Res. 112, 849 (2013).CrossRefGoogle Scholar
  22. 22.
    Z. L. Qu, G. Hu, A. Garfinkel, and J. N. Weiss, Phys. Rep.: Rev. Sec. Phys. Lett. 543, 61 (2014).CrossRefMathSciNetGoogle Scholar
  23. 23.
    K. Agladze, M. W. Kay, V. Krinsky, and N. Sarvazyan, Am. J. Physiol.: Heart Circ. Physiol. 293, H503 (2007).Google Scholar
  24. 24.
    I. S. Erofeev, N. Magome, and K. I. Agladze, JETP Lett. 94, 477 (2011).CrossRefADSGoogle Scholar
  25. 25.
    N. Magome, G. Kanaporis, N. Moisan, K. Tanaka, and K. Agladze, Tissue Eng. A 17, 2703 (2011).CrossRefGoogle Scholar
  26. 26.
    S. Kadota, M. W. Kay, N. Magome, and K. Agladze, JETP Lett. 94, 824 (2012).CrossRefADSGoogle Scholar
  27. 27.
    C. Cabo, A. M. Pertsov, W. T. Baxter, J. M. Davidenko, R. A. Gray, and J. Jalife, Circ. Res. 75, 1014 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  1. 1.Laboratory of Biophysics of Excitable SystemsMoscow Institute of Physics and TechnologyDolgoprudnyi, Moscow regionRussia

Personalised recommendations