Advertisement

JETP Letters

, Volume 102, Issue 9, pp 616–619 | Cite as

Phase stability of α-, γ-, and ε-Ce: DFT+DMFT study

  • A. O. ShorikovEmail author
  • S. V. Streltsov
  • M. A. Korotin
  • V. I. Anisimov
Condensed Matter

Abstract

We present the total energy calculation of α-, γ-, and ε-Ce phases in the frame of GGA, GGA+U, and DFT+DMFT methods. It has been shown that taken into account of Coulomb correlations in the frame of dynamical mean-field theory allows reproducing the phase diagram of Ce in correct way. Equilibrium volume calculated within the DFT+DMFT method for face-centered cubic (fcc) structure agrees with experimental Ce-γ cell volume. With temperature decrease energy minimum shifts toward α cell volume. Moreover, the DFT+DMFT total energy for body-centered tetragonal (bct) structure becomes smaller than for fcc one with increase in pressure in agreement with experimental phase diagram. Importance of accounting of Coulomb correlation in the frame of DMFT is discussed.

Keywords

JETP Letter Generalize Gradient Approximation Equilibrium Volume Wannier Function Total Energy Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Koskenmaki and K. A. Gschneidner, Handbook on the Physics and Chemistry of Rare Earths (Elsevier, Amsterdam, 1978), Chap. 4.Google Scholar
  2. 2.
    L. Z. Liu, J. W. Allen, O. Gunnarsson, N. E. Christensen, and O. K. Andersen, Phys. Rev. B 45, 8934 (1992).CrossRefADSGoogle Scholar
  3. 3.
    B. Johansson and S. Li, J. Alloys Comp. 444–445, 202 (2007).CrossRefGoogle Scholar
  4. 4.
    P. Söderlind, O. Eriksson, B. Johansson, and J. Wills, Phys. Rev. B 52, 13169 (1995).CrossRefADSGoogle Scholar
  5. 5.
    P. Söderlind, O. Eriksson, B. Johansson, and J. Wills, Phys. Rev. B 50, 7291 (1994).CrossRefADSGoogle Scholar
  6. 6.
    M. Lders, A. Ernst, M. Däne, Z. Szotek, A. Svane, D. Ködderitzsch, W. Hergert, B. L. Györffy, and W. M. Temmerman, Phys. Rev. B 71, 205109 (2005).CrossRefADSGoogle Scholar
  7. 7.
    M. B. Zölfl, I. A. Nekrasov, Th. Pruschke, V. I. Anisimov, and J. Keller, Phys. Rev. Lett. 87, 276403 (2001).CrossRefGoogle Scholar
  8. 8.
    K. Haule, V. Oudovenko, S. Y. Savrasov, and G. Kotliar, Phys. Rev. Lett. 94, 036401 (2005).CrossRefADSGoogle Scholar
  9. 9.
    K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev. Lett. 87, 276404 (2001).CrossRefADSGoogle Scholar
  10. 10.
    S. Streltsov, E. Gull, A. Shorikov, M. Troyer, and V. Anisimov, Phys. Rev. B 85, 195109 (2012).CrossRefADSGoogle Scholar
  11. 11.
    S. V. Streltsov, A. O. Shorikov, and V. I. Anisimov, JETP Lett. 92, 543 (2010).CrossRefADSGoogle Scholar
  12. 12.
    B. Amadon and A. Greasier, Phys. Rev. B 91, 161103 (2015).CrossRefADSGoogle Scholar
  13. 13.
    V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).ADSGoogle Scholar
  14. 14.
    B. Amadon, S. Biermann, A. Georges, and F. Aryasetiawan, Phys. Rev. Lett. 96, 066402 (2006).CrossRefADSGoogle Scholar
  15. 15.
    J. Kunes, A. V. Lukoyanov, V. I. Anisimov, R. T. Scalettar, and W. E. Pickett, Nature Mater. 7, 198 (2008).CrossRefADSGoogle Scholar
  16. 16.
    J. Kunes, Dm. M. Korotin, M. A. Korotin, V. I. Anisimov, and P. Werner, Phys. Rev. Lett. 102, 146402 (2009).CrossRefADSGoogle Scholar
  17. 17.
    A. O. Shorikov, Z. V. Pchelkina, V. I. Anisimov, S. L. Skornyakov, and M. A. Korotin, Phys. Rev. B 82, 195101 (2010).CrossRefADSGoogle Scholar
  18. 18.
    I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 106, 106405 (2011).CrossRefADSGoogle Scholar
  19. 19.
    V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).ADSGoogle Scholar
  20. 20.
    J. P. Perdew, in Electronic Structure of Solids, Ed. by P. Ziesche and H. Eschrig (Akademie, Berlin, 1991)Google Scholar
  21. 20.
    J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996)CrossRefADSGoogle Scholar
  22. 20.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefADSGoogle Scholar
  23. 21.
    S. Baroni, S. d. Gironcoli, A. D. Corso, and P. Giannozzi, http://wwwpwscforg.Google Scholar
  24. 22.
    D. Korotin, A. V. Kozhevnikov, S. L. Skornyakov, I. Leonov, N. Binggeli, V. I. Anisimov, and G. Trimarchi, Eur. Phys. J. B 65, 91 (2008).CrossRefADSGoogle Scholar
  25. 23.
    P. H. Dederichs, S. Blügel, R. Zeller, and H. Akai, Phys. Rev. Lett. 53, 2512 (1984)CrossRefADSGoogle Scholar
  26. 23.
    O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen, Phys. Rev. B 39, 1708 (1989)CrossRefADSGoogle Scholar
  27. 23.
    V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).CrossRefADSGoogle Scholar
  28. 24.
    P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. Millis, Phys. Rev. Lett. 97, 076405 (2006).CrossRefADSGoogle Scholar
  29. 25.
    M. Jarrell and J. E. Gubernatis, Phys. Rev. 269, 133 (1996).MathSciNetGoogle Scholar
  30. 26.
    S. Endo, H. Sasaki, and T. Mitsui, J. Phys. Soc. Jpn. 42, 882 (1977).CrossRefADSGoogle Scholar
  31. 27.
    A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner, A. Kozhevnikoi, A. Läuchli, S. R. Manmana, et al., J. Magn. Magn. Mater. 310, 1187 (2007), http://alpscomp-physorgCrossRefADSGoogle Scholar
  32. 27.
    B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, et al., J. Stat. Mech. 2011, P05001 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. O. Shorikov
    • 1
    • 2
    Email author
  • S. V. Streltsov
    • 1
    • 2
  • M. A. Korotin
    • 1
  • V. I. Anisimov
    • 1
    • 2
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations