JETP Letters

, Volume 102, Issue 8, pp 513–517 | Cite as

Evolution of one-dimensional wind-driven sea spectra

  • A. I. Dyachenko
  • D. I. Kachulin
  • V. E. Zakharov
Plasma, Hydro- and Gas Dynamics


We analyze modern operational models of wind wave prediction on the subject for compliance dissipation. Our ab initio numerical simulations demonstrate that heuristic formulas for damping rate of free wind sea due to “white capping” (or wave breaking) dramatically exaggerates the role of this effect in these models.


Wind Speed JETP Letter Wave Breaking Canonical Transformation Extreme Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. Komen, S. Hasselmann, and K. Hasselmann, J. Phys. Oceanogr. 14, 1271 (1984).CrossRefADSGoogle Scholar
  2. 2.
    The WAMDI Group, J. Phys. Oceanogr. 18, 1775 (1988).CrossRefADSGoogle Scholar
  3. 3.
    V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).CrossRefADSGoogle Scholar
  4. 4.
    A. I. Dyachenko and V. E. Zakharov, JETP Lett. 93, 701 (2011).CrossRefADSGoogle Scholar
  5. 5.
    A. I. Dyachenko and V. E. Zakharov, Eur. J. Mech. B: Fluids 32, 17 (2012).zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    A. I. Dyachenko, D. I. Kachulin, and V. E. Zakharov, in Extreme Ocean Waves, 2nd ed., Ed. by E. Pelinovsky and C. Harif (Springer, Berlin, 2016).Google Scholar
  7. 7.
    A. I. Dyachenko and V. E. Zakharov, Phys. Lett. A 190, 144 (1994).MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    A. I. Dyachenko, Y. V. Lvov, and V. E. Zakharov, Physica D 87, 233 (1995).zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    A. I. Dyachenko, D. I. Kachulin, and V. E. Zakharov, JETP Lett. 98, 43 (2013).CrossRefADSGoogle Scholar
  10. 10.
    V. E. Zakharov and A. I. Dyachenko, arXiv: 1206.2046.Google Scholar
  11. 11.
    A. I. Dyachenko and V. E. Zakharov, JETP Lett. 88, 307 (2008).CrossRefADSGoogle Scholar
  12. 12.
    K. Hasselmann, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Mller, D. J. Olbers, K. Richter, W. Sell, and H. Walden, Ergaenzungsh. Deutsch. Hydrograph. Zeitschr. 12, 95 (1973).Google Scholar
  13. 13.
    W. Pierson and L. Moskowitz, J. Geophys. Res. 69, 5181 (1964).CrossRefADSGoogle Scholar
  14. 14.
    K. Hasselmann, J. Fluid Mech. 12, 481 (1962).zbMATHMathSciNetCrossRefADSGoogle Scholar
  15. 15.
    V. E. Zakharov, A. O. Korotkevich, and A. O. Prokofiev, AIP Conf. Proc. 1168, 1229 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. I. Dyachenko
    • 1
    • 2
  • D. I. Kachulin
    • 1
  • V. E. Zakharov
    • 1
    • 2
    • 3
    • 4
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  3. 3.Department of MathematicsUniversity of ArizonaTucsonUSA
  4. 4.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations