JETP Letters

, Volume 102, Issue 4, pp 242–247 | Cite as

Anomalies of a meniscus of microinclusions in freely suspended smectic films

  • P. V. Dolganov
  • V. K. Dolganov
  • E. I. Kats
Condensed Matter


It has been shown that a meniscus of microinclusions in freely suspended smectic films can be significantly different from a meniscus near a flat surface. Measurements have been performed in smectic A films into which glycerol drops have been dispersed. The formation of the meniscus near a glycerol drop is accompanied by an increase in the size of the meniscus and by an increase in the corresponding material flow to the central part of the meniscus with the parallel dissolution of glycerol in the film. Structural instability associated with different curvatures of the surfaces of the meniscus of microinclusions, together with hydrodynamic instability associated with the motion of the material, can result in the transformation of particles with the meniscus to other structures.


Liquid Crystal JETP Letter Interference Fringe Monochromatic Light Structural Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Pieranski, L. Beliard, J.-Ph. Tourellec, X. Leoncini, C. Furtlehner, H. Dumoulin, E. Riou, B. Jouvin, J. P. Fenerol, Ph. Palaric, J. Hueving, B. Cartier, and I. Kraus, Physica A 194, 364 (1993).CrossRefADSGoogle Scholar
  2. 2.
    W. H. de Jeu, B. I. Ostrovskii, and A. N. Shalaginov, Rev. Mod. Phys. 75, 181 (2003).CrossRefADSGoogle Scholar
  3. 3.
    J.-C. Géminard, R. Holyst, and P. Oswald, Phys. Rev. Lett. 78, 1924 (1997).CrossRefADSGoogle Scholar
  4. 4.
    F. Picano, P. Oswald, and E. Kats, Phys. Rev. E 63, 021705 (2001).CrossRefADSGoogle Scholar
  5. 5.
    S. Stoebe, P. Mach, and C. C. Huang, Phys. Rev. Lett. 73, 1383 (1994).CrossRefADSGoogle Scholar
  6. 6.
    E. I. Demikhov, V. K. Dolganov, and K. P. Meletov, Phys. Rev. E 52, R1285 (1995).CrossRefADSGoogle Scholar
  7. 7.
    J. C. Loudet, P. V. Dolganov, P. Patricio, Y. Saadaoui, and P. Cluzeau, Phys. Rev. Lett. 106, 117802 (2011).CrossRefADSGoogle Scholar
  8. 8.
    P. Cluzeau, P. Poulin, G. Joly, and H. T. Nguyen, Phys. Rev. E 63, 031702 (2001).CrossRefADSGoogle Scholar
  9. 9.
    P. V. Dolganov and P. Cluzeau, Phys. Rev. E 78, 021701 (2008).CrossRefADSGoogle Scholar
  10. 10.
    P. V. Dolganov, H. T. Nguyen, G. Joly, V. K. Dolganov, and P. Cluzeau, Eur. Phys. J. E 25, 31 (2008).CrossRefGoogle Scholar
  11. 11.
    C. Bohley and R. Stannarius, Soft Mater. 4, 683 (2008).CrossRefADSGoogle Scholar
  12. 12.
    N. M. Silvestre, P. Patricio, M. M. Telo da Gama, A. Pattanaporkrattana, C. S. Park, J. E. Maclennan, and N. A. Clark, Phys. Rev. E 80, 041708 (2009).CrossRefADSGoogle Scholar
  13. 13.
    M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964).Google Scholar
  14. 14.
    H. Schuring and R. Stannarius, Langmuir 18, 9735 (2002).CrossRefGoogle Scholar
  15. 15.
    P. V. Dolganov, P. Cluzeau, G. Joly, V. K. Dolganov, and H. T. Nguyen, Phys. Rev. E 72, 031713 (2005).CrossRefADSGoogle Scholar
  16. 16.
    P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations