JETP Letters

, Volume 102, Issue 3, pp 161–166 | Cite as

Relaxation time mapping of single quantum dots and substrate background fluorescence

  • E. Pshenay-SeverinEmail author
  • I. Mukhin
  • S. Fasold
  • R. Geiss
  • A. Steinbrück
  • R. Grange
  • A. Chipouline
  • T. Pertsch
Condensed Matter


We experimentally investigated the role of background signal in time resolved photoluminescence experiments with single quantum dots on substrates. We show that the background fluorescence signal from thin gold films fabricated by electron-beam evaporation and from Al2O3 layers fabricated by atomic layer deposition have to be taken into consideration in experiments on the single photon level. Though all investigated components can be distinguished by their photoluminescence decay rates, the presence of the background signal prevents the observation of photon antibunching from single quantum dots. Moreover, a single quantum dot acts as a hot spot enabling the plasmon supported fluorescence enhancement of gold.


JETP Letter Gold Layer Strong Coupling Regime Thin Gold Film Instrument Response Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Nature460(7259),1110(2009).CrossRefADSGoogle Scholar
  2. 2.
    K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, Phys. Rev. Lett. 105,227403(2010).CrossRefADSGoogle Scholar
  3. 3.
    A. E. Nikolaenko, F. de Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. di Fabrizio, and N. I. Zheludev, Phys. Rev. Lett. 104,153902(2010).CrossRefADSGoogle Scholar
  4. 4.
    E. M. Purcell, Phys. Rev. 69,681(1946).CrossRefGoogle Scholar
  5. 5.
    A. F. Koenderink, Opt. Lett. 35,4208(2010).CrossRefADSGoogle Scholar
  6. 6.
    E. B. Urea, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, Adv. Mat. 24, OP314 (2012).Google Scholar
  7. 7.
    I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, ACS Nano 7,7824(2013).CrossRefGoogle Scholar
  8. 8.
    A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, Science329(5994),930(2010).CrossRefADSGoogle Scholar
  9. 9.
    J. Zuloaga, E. Prodan, and P. Nordlander, ACS Nano 4,5269(2010).CrossRefGoogle Scholar
  10. 10.
    P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Nano Lett. 11,2318(2011).CrossRefADSGoogle Scholar
  11. 11.
    K. Slowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl, Phys. Rev. B 88,195414(2013).CrossRefADSGoogle Scholar
  12. 12.
    L. Novotny and N. van Hulst, Nature Photon. 5,83(2011).CrossRefADSGoogle Scholar
  13. 13.
    S. Kumar, A. Huck, Y. W. Lu, and U. L. Andersen, Opt. Lett. 38,3838(2013).CrossRefADSGoogle Scholar
  14. 14.
    Y. Ito, K. Matsuda, and Y. Kanemitsu, Phys. Rev. B 75,033309(2007).CrossRefADSGoogle Scholar
  15. 15.
    P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Nature 406,968(2000).CrossRefADSGoogle Scholar
  16. 16. Scholar
  17. 17.
    W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15,2854(2003).CrossRefGoogle Scholar
  18. 18.
    D. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).Google Scholar
  19. 19.
    R. Hanbury Brown and R. Q. Twiss, Nature (London) 177,27(1956).CrossRefADSGoogle Scholar
  20. 20.
    A. Mooradian, Phys. Rev. Lett. 22,185(1969).CrossRefADSGoogle Scholar
  21. 21.
    J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, J. Chem. Phys. 108,9137(1998).CrossRefADSGoogle Scholar
  22. 22.
    M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, Chem. Phys. Lett. 317,517(2000).CrossRefADSGoogle Scholar
  23. 23.
    G. T. Boyd, Z. H. Yu, and Y. R. Shen, Phys. Rev. B 33,7923(1986).CrossRefADSGoogle Scholar
  24. 24.
    M. R. Beversluis, A. Bouhelier, and L. Novotny, Phys. Rev. B 68,115433(2003).CrossRefADSGoogle Scholar
  25. 25.
    J. Vancea, G. Reiss, F. Schneider, K. Bauer, and H. Hoffmann, Surf. Sci. 218,108(1989).CrossRefADSGoogle Scholar
  26. 26.
    O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, J. Phys. Chem. B 107,3101(2003).CrossRefGoogle Scholar
  27. 27.
    W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Doneg, and A. Meijerink, J. Phys. Chem. B 105,8281(2001).CrossRefGoogle Scholar
  28. 28.
    W. G. J. H. M. van Sark, P. L. T. M. Frederix, A. A. Bol, H. C. Gerritsen, and A. Meijerink, Chem. Phys. Chem. 3,871(2002).Google Scholar
  29. 29.
    J. R. Dethlefsen and A. Dssing, Nano Lett. 11,1964(2011).CrossRefADSGoogle Scholar
  30. 30.
    K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, Phys. Rev. Lett. 89,117401(2002).CrossRefADSGoogle Scholar
  31. 31.
    P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96,113002(2006).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • E. Pshenay-Severin
    • 1
    • 2
    Email author
  • I. Mukhin
    • 3
    • 4
  • S. Fasold
    • 1
  • R. Geiss
    • 1
  • A. Steinbrück
    • 1
  • R. Grange
    • 1
  • A. Chipouline
    • 1
  • T. Pertsch
    • 1
  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Nonlinear Physics Center, Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia
  3. 3.St. Petersburg Academic UniversitySt. PetersburgRussia
  4. 4.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations