JETP Letters

, Volume 102, Issue 3, pp 167–175 | Cite as

Aging and memory effects in the nonequilibrium critical behavior of structurally disordered magnetic materials in the course of their evolution from the low-temperature initial state

  • V. V. PrudnikovEmail author
  • P. V. Prudnikov
  • E. A. Pospelov
  • P. N. Malyarenko
Condensed Matter


The Monte Carlo study of the nonequilibrium critical evolution of structurally disordered anisotropic magnetic materials from the low-temperature initial state with the reduced magnetization m 0 = 1 is performed within the broad range of spin densities, p = 1.0, 0.95, 0.8, 0.6, and 0.5. It is shown that, in such systems, the pinning of domain walls by structural defects occurring when the evolution starts from the low-temperature state leads to significant changes in the nonequilibrium “aging” and “memory” effects in comparison to those characteristic of the “pure” system. As a result, in the long-term regime at times tt w » t w » 1, an anomalously strong slowing down in the correlation effects is revealed. It is shown that a decrease in the autocorrelation function with time occurs according to a power law typical of the critical relaxation of the magnetization in contrast to a usual scaling dependence. Eventually, the limiting value of the fluctuation–dissipation ratio X for the structurally disordered systems with p < 1 vanishes, whereas for the pure system, we have X = 0.784(5). The nonequilibrium critical “superaging” stage is found. This stage is characterized by the critical exponent µ = 2.30(6) for weakly disordered systems and by µ = 2.80(7) for the systems with strong disorder.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Henkel and M. Pleimling, Non-Equilibrium Phase Transitions, Vol. 2: Ageing and Dynamical Scaling far from Equilibrium, Theoretical and Mathematical Physics (Springer, Heidelberg, 2010), p. 544.CrossRefGoogle Scholar
  2. 2.
    P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    G. N. Bochkov and Yu. E. Kuzovlev, Phys. Usp. 56,590(2013).CrossRefADSGoogle Scholar
  4. 4.
    P. V. Prudnikov, V. V. Prudnikov, and E. A. Pospelov, JETP Lett. 98,619(2013).CrossRefGoogle Scholar
  5. 5.
    V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, J. Exp. Theor. Phys. 118,401(2014).CrossRefADSGoogle Scholar
  6. 6.
    V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and A. N. Vakilov, Phys. Lett. A 379,774(2015).CrossRefGoogle Scholar
  7. 7.
    P. Calabrese, A. Gambassi, and F. Krzakala, J. Stat. Mech. 6,2(2006).Google Scholar
  8. 8.
    P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49,435(1977).CrossRefADSGoogle Scholar
  9. 9.
    H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B 73,539(1989).CrossRefADSGoogle Scholar
  10. 10.
    V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, and S. S. Tsirkin, J. Exp. Theor. Phys. 106,1095(2008).CrossRefADSGoogle Scholar
  11. 11.
    V. V. Prudnikov, P. V. Prudnikov, A. S. Krinitsyn, A.N. Vakilov, E. A. Pospelov, and M. V. Rychkov, Phys. Rev. E 81,011130(2010).CrossRefADSGoogle Scholar
  12. 12.
    A. Crisanti and F. Ritort, J. Phys. A: Math. Gen. 36, R181 (2003).Google Scholar
  13. 13.
    L. F. Cugliandolo, J. Phys. A: Math. Theor. 44,483001(2011).MathSciNetCrossRefGoogle Scholar
  14. 14.
    K. Komatsu, D. L’Hote, S. Nakamae, V. Mosser, M. Konczykowski, E. Dubois, V. Dupuis, and R. Perzynski, Phys. Rev. Lett. 106,150603(2011).CrossRefADSGoogle Scholar
  15. 15.
    A. Jaster, J. Mainville, L. Schülke, and B. Zheng, J. Phys. A 32,1395(1999).zbMATHCrossRefADSGoogle Scholar
  16. 16.
    W. Janke, Monte Carlo Methods in Classical Statistical Physics, Lecture Notes in Physics, Vol.739(Springer, Berlin, 2008), p. 79.ADSGoogle Scholar
  17. 17.
    A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44,5081(1991).CrossRefADSGoogle Scholar
  18. 18.
    V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, and A. S. Krinitsyn, J. Exp. Theor. Phys. 105,371(2007).CrossRefADSGoogle Scholar
  19. 19.
    R. Guida and J. Zinn-Justin, J. Phys. A 31,8103(1998).zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    A. S. Krinitsyn, V. V. Prudnikov, and P. V. Prudnikov, Theor. Math. Phys. 147,561(2006).zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Description of Nonequilibrium Critical Behaviour in Disordered Systems by the Theoretical Methods (Nauka, Moscow, 2013) [in Russian].Google Scholar
  22. 22.
    V. V. Prudnikov, A. N. Vakilov, and D. V. Talashok, JETP Lett. 100,675(2014).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • V. V. Prudnikov
    • 1
    Email author
  • P. V. Prudnikov
    • 1
  • E. A. Pospelov
    • 1
  • P. N. Malyarenko
    • 1
  1. 1.Omsk State UniversityOmskRussia

Personalised recommendations