Aging and memory effects in the nonequilibrium critical behavior of structurally disordered magnetic materials in the course of their evolution from the low-temperature initial state
- 85 Downloads
- 6 Citations
Abstract
The Monte Carlo study of the nonequilibrium critical evolution of structurally disordered anisotropic magnetic materials from the low-temperature initial state with the reduced magnetization m 0 = 1 is performed within the broad range of spin densities, p = 1.0, 0.95, 0.8, 0.6, and 0.5. It is shown that, in such systems, the pinning of domain walls by structural defects occurring when the evolution starts from the low-temperature state leads to significant changes in the nonequilibrium “aging” and “memory” effects in comparison to those characteristic of the “pure” system. As a result, in the long-term regime at times t–t w » t w » 1, an anomalously strong slowing down in the correlation effects is revealed. It is shown that a decrease in the autocorrelation function with time occurs according to a power law typical of the critical relaxation of the magnetization in contrast to a usual scaling dependence. Eventually, the limiting value of the fluctuation–dissipation ratio X∞ for the structurally disordered systems with p < 1 vanishes, whereas for the pure system, we have X∞ = 0.784(5). The nonequilibrium critical “superaging” stage is found. This stage is characterized by the critical exponent µ = 2.30(6) for weakly disordered systems and by µ = 2.80(7) for the systems with strong disorder.
Preview
Unable to display preview. Download preview PDF.
References
- 1.M. Henkel and M. Pleimling, Non-Equilibrium Phase Transitions, Vol. 2: Ageing and Dynamical Scaling far from Equilibrium, Theoretical and Mathematical Physics (Springer, Heidelberg, 2010), p. 544.CrossRefGoogle Scholar
- 2.P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).zbMATHMathSciNetCrossRefADSGoogle Scholar
- 3.G. N. Bochkov and Yu. E. Kuzovlev, Phys. Usp. 56,590(2013).CrossRefADSGoogle Scholar
- 4.P. V. Prudnikov, V. V. Prudnikov, and E. A. Pospelov, JETP Lett. 98,619(2013).CrossRefGoogle Scholar
- 5.V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, J. Exp. Theor. Phys. 118,401(2014).CrossRefADSGoogle Scholar
- 6.V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and A. N. Vakilov, Phys. Lett. A 379,774(2015).CrossRefGoogle Scholar
- 7.P. Calabrese, A. Gambassi, and F. Krzakala, J. Stat. Mech. 6,2(2006).Google Scholar
- 8.P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49,435(1977).CrossRefADSGoogle Scholar
- 9.H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B 73,539(1989).CrossRefADSGoogle Scholar
- 10.V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, and S. S. Tsirkin, J. Exp. Theor. Phys. 106,1095(2008).CrossRefADSGoogle Scholar
- 11.V. V. Prudnikov, P. V. Prudnikov, A. S. Krinitsyn, A.N. Vakilov, E. A. Pospelov, and M. V. Rychkov, Phys. Rev. E 81,011130(2010).CrossRefADSGoogle Scholar
- 12.A. Crisanti and F. Ritort, J. Phys. A: Math. Gen. 36, R181 (2003).Google Scholar
- 13.L. F. Cugliandolo, J. Phys. A: Math. Theor. 44,483001(2011).MathSciNetCrossRefGoogle Scholar
- 14.K. Komatsu, D. L’Hote, S. Nakamae, V. Mosser, M. Konczykowski, E. Dubois, V. Dupuis, and R. Perzynski, Phys. Rev. Lett. 106,150603(2011).CrossRefADSGoogle Scholar
- 15.A. Jaster, J. Mainville, L. Schülke, and B. Zheng, J. Phys. A 32,1395(1999).zbMATHCrossRefADSGoogle Scholar
- 16.W. Janke, Monte Carlo Methods in Classical Statistical Physics, Lecture Notes in Physics, Vol.739(Springer, Berlin, 2008), p. 79.ADSGoogle Scholar
- 17.A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44,5081(1991).CrossRefADSGoogle Scholar
- 18.V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, and A. S. Krinitsyn, J. Exp. Theor. Phys. 105,371(2007).CrossRefADSGoogle Scholar
- 19.R. Guida and J. Zinn-Justin, J. Phys. A 31,8103(1998).zbMATHMathSciNetCrossRefADSGoogle Scholar
- 20.A. S. Krinitsyn, V. V. Prudnikov, and P. V. Prudnikov, Theor. Math. Phys. 147,561(2006).zbMATHMathSciNetCrossRefGoogle Scholar
- 21.V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Description of Nonequilibrium Critical Behaviour in Disordered Systems by the Theoretical Methods (Nauka, Moscow, 2013) [in Russian].Google Scholar
- 22.V. V. Prudnikov, A. N. Vakilov, and D. V. Talashok, JETP Lett. 100,675(2014).CrossRefADSGoogle Scholar