Advertisement

JETP Letters

, Volume 102, Issue 2, pp 73–79 | Cite as

Emergent physics on Mach’s principle and the rotating vacuum

  • G. Jannes
  • G. E. Volovik
Astrophysics and Cosmology

Abstract

Mach’s principle applied to rotation can be correct if one takes into account the rotation of the quantum vacuum together with the Universe. Whether one can detect the rotation of the vacuum or not depends on its properties. If the vacuum is fully relativistic at all scales, Mach’s principle should work and one cannot distinguish the rotation: in the rotating Universe + vacuum, the co-rotating bucket will have a flat surface (not concave). However, if there are “quantum gravity” effects, which violate Lorentz invariance at high energy, then the rotation will become observable. This is demonstrated by analogy in condensed-matter systems, which consist of two subsystems: superfluid background (analog of vacuum) and “relativistic” excitations (analog of matter). For the low-energy (long-wavelength) observer the rotation of the vacuum is not observable. In the rotating frame, the “relativistic” quasiparticles feel the background as a Minkowski vacuum; i.e., they do not feel the rotation. Mach’s idea of the relativity of rotational motion does indeed work for them. However, rotation becomes observable by high-energy observers, who can see the quantum gravity effects.

Keywords

JETP Letter Emergent Physic Lorentz Invariance Cosmological Horizon Quantum Vacuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Mach, Die Mechanik in ihrer Entwickelung: historisch- kritisch dargestellt (Brockhaus, Leipzig, 1883) [in German].Google Scholar
  2. 2.
    A. Einstein, Ann. Phys. 360, 241 (1918)CrossRefGoogle Scholar
  3. 3.
    Mach’s Principle: From Newton’s Bucket to Quantum Gravity, Ed. by J. Barbour and H. Pfister (Birkhauser, Boston, MA, 1995).Google Scholar
  4. 4.
    H. Bondi and J. Samuel, Phys. Lett. A 228, 121 (1997).MATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    H. I. Hartman and C. Nissim-Sabat, Am. J. Phys. 71, 1163 (2003).CrossRefADSGoogle Scholar
  6. 6.
    A. Bhadra and S. C. Das, Am. J. Phys. 75, 850 (2007).CrossRefADSGoogle Scholar
  7. 7.
    H. I. Hartman and C. Nissim-Sabat, Am. J. Phys. 75, 854 (2007).CrossRefADSGoogle Scholar
  8. 8.
    B. Mashhoon and P. S. Wesson, Ann. Phys. 524, 63 (2012).MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Barbour, Ann. Phys. 524, A39 (2012).MATHCrossRefADSGoogle Scholar
  10. 10.
    B. Mashhoon and P. S. Wesson, Ann. Phys. 524, A44 (2012).MATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    H. Lichtenegger and B. Mashhoon, in The Measurement of Gravitomagnetism: A Challenging Enterprise, Ed. by L. Iorio (Nova Science, New York, 2007), p. 13.Google Scholar
  12. 12.
    J. Barbour, Found. Phys. 40, 1263 (2010).MATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    H. Fearn, J. Mod. Phys. 6, 260 (2015).CrossRefGoogle Scholar
  14. 14.
    V. V. Lasukov, E. Y. Danilyuk, and E. E. Ilkin, Russ. Phys. J. 57, 783 (2014).CrossRefGoogle Scholar
  15. 15.
    P. Ghose, arXiv:1408.2403 [gr-qc].Google Scholar
  16. 16.
    H. Telkamp, arXiv:1404.4046 [gr-qc].Google Scholar
  17. 17.
    H. Essén, J. Gravity 2014, 415649 (2014).CrossRefGoogle Scholar
  18. 18.
    B. Veto, arXiv:1302.4529 [gr-qc].Google Scholar
  19. 19.
    H. Essén, Eur. J. Phys. 34, 139 (2013).MATHCrossRefGoogle Scholar
  20. 20.
    T. Koslowski, arXiv:1501.03007 [gr-qc].Google Scholar
  21. 21.
    C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).MATHMathSciNetCrossRefADSGoogle Scholar
  22. 22.
    K. Gödel, Rev. Mod. Phys. 21, 447 (1949).MATHCrossRefADSGoogle Scholar
  23. 23.
    W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).CrossRefADSGoogle Scholar
  24. 24.
    C. Barceló, S. Liberati, and M. Visser, Living Rev. Rel. 14, 3 (2011).Google Scholar
  25. 25.
    G. E. Volovik, J. Low. Temp. Phys. 145, 337 (2006).CrossRefADSGoogle Scholar
  26. 26.
    R. Schutzhold and W. G. Unruh, Phys. Rev. D 66, 044019 (2002).MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    G. E. Volovik, JETP Lett. 82, 624 (2005).CrossRefADSGoogle Scholar
  28. 28.
    G. Rousseaux, C. Mathis, P. Maissa, T. G. Philbin, and U. Leonhardt, New J. Phys. 10, 053015 (2008).CrossRefADSGoogle Scholar
  29. 29.
    S. Weinfurtner, E. W. Tedford, M. C. J. Penrice, W. G. Unruh, and G. A. Lawrence, Phys. Rev. Lett. 106, 021302 (2011).CrossRefADSGoogle Scholar
  30. 30.
    G. Jannes, R. Piquet, P. Maissa, C. Mathis, and G. Rousseaux, Phys. Rev. E 83, 056312 (2011).CrossRefADSGoogle Scholar
  31. 31.
    P. Painlevé, C. R. Acad. Sci. (Paris) 173, 677 (1921)MATHGoogle Scholar
  32. 31.
    A. Gullstrand, Arkiv. Mat. Astron. Fys. 16 (8), 1 (1922).Google Scholar
  33. 32.
    C. Barceló and G. Jannes, Found. Phys. 38, 191 (2008).MATHMathSciNetCrossRefADSGoogle Scholar
  34. 33.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).MATHGoogle Scholar
  35. 34.
    M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, Cambridge, 2012).CrossRefGoogle Scholar
  36. 35.
    A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011)CrossRefADSGoogle Scholar
  37. 35.
    A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011).CrossRefADSGoogle Scholar
  38. 36.
    C. Barceló, R. Carballo, L. J. Garay, and G. Jannes, New J. Phys. 16, 123028 (2014).CrossRefADSGoogle Scholar
  39. 37.
    S. Liberati, Lect. Notes Phys. 870, 297 (2013).MathSciNetCrossRefADSGoogle Scholar
  40. 38.
    V. A. Kostelecky and R. Lehnert, Phys. Rev. D 63, 065008 (2001).MathSciNetCrossRefADSGoogle Scholar
  41. 39.
    S. Liberati, Class. Quantum Grav. 30, 133001 (2013).MathSciNetCrossRefADSGoogle Scholar
  42. 40.
    G. Chapline and P. O. Mazur, Acta Phys. Polon. B 45, 905 (2014).MathSciNetCrossRefADSGoogle Scholar
  43. 41.
    G. Chapline and P. O. Mazur, AIP Conf. Proc. 822, 160 (2006).CrossRefADSGoogle Scholar
  44. 42.
    G. Chapline and P. O. Mazur, arXiv:0911.2326 [hep-th].Google Scholar
  45. 43.
    J. J. Hosio, V. B. Eltsov, R. de Graaf, P. J. Heikkinen, R. Hanninen, M. Krusius, V. S. L’vov, and G. E. Volovik, Phys. Rev. Lett. 107, 135302 (2011).CrossRefADSGoogle Scholar
  46. 44.
    I. M. Khalatnikov, An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965).Google Scholar
  47. 45.
    C. Barceló, L. J. Garay, and G. Jannes, Found. Phys. 41, 1532 (2011).MATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  1. 1.Modelling & Numerical Simulation GroupUniversidad Carlos III de MadridLeganésSpain
  2. 2.Low Temperature LaboratoryAalto UniversityAaltoFinland
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations