JETP Letters

, Volume 101, Issue 11, pp 772–775 | Cite as

Excitation wave propagation in a patterned multidomain cardiac tissue

  • N. N. Kudryashova
  • A. S. Teplenin
  • Y. V. Orlova
  • K. I. Agladze


Electrospun fibrous mats are widely used in the contemporary cardiac tissue engineering as the substrates for growing cardiac cells. The substrate with chaotically oriented nanofibers leads to the growth of cardiac tissue with randomly oriented, but internally morphologically anisotropic clusters or domains. The domain structure affects the stability of the excitation propagation and we studied the stability of the propagating excitation waves versus the average size of the domains and the externally applied excitation rate. In an experimental model based on neonatal rat cardiac tissue monolayers, as well as in the computer simulations, we have found that an increase in domain sizes leads to the decrease in the critical stimulation frequencies, thus evidencing that larger domains are having a higher arrhythmogenic effect.


JETP Letter Domain Size Cardiac Tissue Excitation Wave Anisotropy Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Heydarkhan-Hagvall, K. Schenke-Layland, A. P. Dha-nasopon, F. Rofail, H. Smith, B. M. Wu, R. Shemin, R. E. Beygui, and W. R. MacLellan, Biomaterials 29, 2907e14 (2008).CrossRefGoogle Scholar
  2. 2.
    M. Y. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes, Biomaterials 27, 2705e15 (2006).Google Scholar
  3. 3.
    J. L. Lowery, N. Datta, and G. C. Rutledge, Biomateri-als 31, 491e504 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Orlova, N. Magome, L. Liu, Y. Chen, and K. Agladze, Biomaterials 32, 5615 (2011).CrossRefGoogle Scholar
  5. 5.
    N. N. Kudryashova, A. S. Teplenin, Y. V. Orlova, L. V. Selina, and K. Agladze, J. Mol. Cell. Cardiol. 76, 227 (2014).CrossRefGoogle Scholar
  6. 6.
    N. Bursac, Y. H. Loo, K. Leong, and L. Tung, Bio-chem. Bioph. Res. Co. 361, 847 (2007).CrossRefGoogle Scholar
  7. 7.
    N. Bursac, K. K. Parker, S. Iravanian, and L. Tung, Circ. Res. 91 (12), e45 (2002).CrossRefGoogle Scholar
  8. 8.
    K. Agladze, M. W. Kay, V. Krinsky, and N. Sarvazyan, Am. J. Physiol.-Heart C 293, 503 (2007).CrossRefGoogle Scholar
  9. 9.
    R. R. Aliev and A. V. Panfilov, Chaos Solit. Fract. 7, 293 (1996).CrossRefADSGoogle Scholar
  10. 10.
    C. H. Luo and Y. Rudy, Circ. Res. 68, 1501 (1994).CrossRefGoogle Scholar
  11. 11.
    C. H. Luo and Y. Rudy, Circ. Res. 74, 1071 (1994).CrossRefGoogle Scholar
  12. 12.
    F. Fenton and A. Karma, Chaos 8, 20 (1998).MATHCrossRefADSGoogle Scholar
  13. 13.
    R. FitzHugh, Bull. Math. Biophys. 17, 257 (1955).CrossRefGoogle Scholar
  14. 14.
    J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE 117, 2061 (1962).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • N. N. Kudryashova
    • 1
  • A. S. Teplenin
    • 1
  • Y. V. Orlova
    • 2
  • K. I. Agladze
    • 1
  1. 1.Laboratory of Biophysics of Excitable SystemsMoscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  2. 2.iCeMS Research BuildingYoshida HonmachiKyotoJapan

Personalised recommendations