JETP Letters

, Volume 101, Issue 7, pp 474–480 | Cite as

Structure and atomic vibrations in bimetallic Ni13 − n Al n clusters

Condensed Matter


The binding energy, equilibrium geometry, and vibration frequencies in bimetallic clusters Ni13 − n Al n (n = 0–13) have been calculated using the embedded atom method potentials. It has been shown that the icosahedral structure is the most stable in monoatomic and bimetallic clusters. A tendency of Al atoms to segregate on the cluster surface has been revealed in agreement with the experimental data. The calculations of the atomic vibrations have shown the nonmonotonic dependence of the minimum and maximum vibration frequencies of cluster atoms on its composition and the coupling of their extreme values with the most stable atomic configuration. The increase in the number of Al atoms leads to the shift of the frequency spectrum and the substantial redistribution of the localization of vibrations on the cluster atoms.


JETP Letter Cluster Atom Nickel Atom Breathing Mode Vibration State 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ferrando, J. Jellinek, and R. L. Johnston, Chem. Rev. 108, 845 (2008).CrossRefGoogle Scholar
  2. 2.
    J. Jellinek and E. B. Krissinel, Chem. Phys. Lett. 258, 283 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    M. Calleja, C. Rey, M. M. G. Alemany, and L. J. Callego, Phys. Rev. B 60, 2020 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    E. F. Rexer, J. Jellinek, E. B. Krissinel, E. K. Park, and S. J. Riley, J. Chem. Phys. 117, 82 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    D. R. Belcher, M. W. Radny, and B. V. King, Mater. Trans. 48, 689 (2007).CrossRefGoogle Scholar
  6. 6.
    H. Fengyou, Z. Yongfang, L. Xinying, and L. Fengli, J. Mol. Struct.: THEOCHEM 807, 153 (2007).CrossRefGoogle Scholar
  7. 7.
    M. D. Deshpande, R. Pandey, M. A. Blanco, and A. Khalkar, J. Nano Res. 12, 1129 (2010).CrossRefGoogle Scholar
  8. 8.
    M. Harb, F. Rabilloud, and D. Simon, Phys. Chem. Chem. Phys. 12, 4246 (2010).CrossRefGoogle Scholar
  9. 9.
    J. A. Alonso, Chem. Rev. 100, 637 (2000).CrossRefGoogle Scholar
  10. 10.
    J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, and P. A. Midgley, Acc. Chem. Res. 36, 20 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Zhao and R. H. Xie, Phys. Rev. B 68, 035401 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    Yu. Kh. Vekilov and M. A. Chernikov, Phys. Usp. 53, 537 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    A. L. Mackay, Acta Crystallogr. 10, 254 (1957).CrossRefGoogle Scholar
  15. 15.
    G. Bergman, J. L. T. Waugh, and L. Pauling, Acta Crystallogr. 15, 916 (1962).CrossRefGoogle Scholar
  16. 16.
    G. G. Rusina, S. D. Borisova, and E. V. Chulkov, Russ. J. Phys. Chem. A 87, 233 (2013).CrossRefGoogle Scholar
  17. 17.
    P.-H. Tang, T.-M. Wu, T.-W. Yen, S. K. Lai, and P. J. Hsu, J. Chem. Phys. 135, 094302 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    G. Shafai, M. A. Ortigoza, and T. S. Rahman, J. Phys.: Condens. Matter 24, 104026 (2012).ADSGoogle Scholar
  19. 19.
    Ch. Ch. Yang and Y.-W. Mai, Mater. Sci. Eng. R 79, 1 (2014).MATHCrossRefGoogle Scholar
  20. 20.
    M. Castro, C. Jamorski, and D. R. Salahub, Chem. Phys. Lett. 271, 133 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    E. M. Nour, C. Alfaro-Franco, K. A. Gengerich, and J. Laane, J. Chem. Phys. 86, 4779 (1987).ADSCrossRefGoogle Scholar
  22. 22.
    M. Moskovits and J. E. Hulse, J. Chem. Phys. 66, 3988 (1977).ADSCrossRefGoogle Scholar
  23. 23.
    K. P. Huber and G. Herzberg, Anal. Chim. Acta 144, 298 (1982).CrossRefGoogle Scholar
  24. 24.
    Z. Fu, G. W. Lemire, G. A. Bishea, and M. D. Morse, J. Chem. Phys. 93, 8420 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    H. Oymak and S. Erkoc, Phys. Rev. A 66, 033202 (2002).ADSCrossRefGoogle Scholar
  26. 26.
    Y. Ouyang, J. Wang, Y. Hou, X. Zhong, Y. Du, and Y. Feng, J. Chem. Phys. 128, 074305 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    I. Önal, A. Sayar, A. Uzun, and S. Ozkar,, J. Comp. Theor. Nanosci. 6, 8867 (2009).CrossRefGoogle Scholar
  28. 28.
    L. Verlet, Phys. Rev. 159, 98 (1967).ADSCrossRefGoogle Scholar
  29. 29.
    S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).ADSCrossRefGoogle Scholar
  30. 30.
    R. A. Johnson, Phys. Rev. B 39, 12554 (1989).ADSCrossRefGoogle Scholar
  31. 31.
    G. G. Rusina and E. V. Chulkov, Russ. Chem. Rev. 82, 483 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    E. Hristova, Y. Dong, V. G. Grigoryn, and M. Springborg, J. Chem. Phys. A 112, 7905 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • G. G. Rusina
    • 1
    • 2
  • S. D. Borisova
    • 1
    • 2
  • E. V. Chulkov
    • 3
    • 4
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.CFM-MPC, Centro Mixto CSIC-UPV/EHU, Departamento de Física de MaterialesUPV/EHUSan SebastiánSpain

Personalised recommendations