Advertisement

JETP Letters

, Volume 101, Issue 7, pp 453–458 | Cite as

Topological defects in smectic islands in freely suspended films

  • P. V. Dolganov
  • N. S. Shuravin
  • V. K. Dolganov
  • E. I. Kats
Condensed Matter

Abstract

Textures created by point topological defects in defects in polar smectic films have been studied. Such defects have been created by the dynamic method (substance from a very thin film does not have time to approach its edges and thicker islands with a topological defect are controllably formed). Topological defects have been studied in smectic islands with a thickness of six to eight molecular layers in a film with a thickness of two molecular layers. Competition between two-dimensional orientational elasticity in islands and the orientation of the director at the boundary of smectic islands results in different configurations of the field of the c-director created by a topological defect. A transition between configurations occurs at a change in the dimension of islands and depends on the dipole polarization of a liquid crystal. The comparison of the numerical calculations of the structure of topological defects with experimental data has allowed determining the dependence of the anisotropy of the two-dimensional orientational elasticity on the polarization of smectic films.

Keywords

JETP Letter Molecular Layer Topological Defect Polarization Charge Orientational Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 1995).CrossRefGoogle Scholar
  2. 2.
    S. A. Langer and J. P. Sethna, Phys. Rev. A 34, 5035 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    O. D. Lavrentovich, Liq. Cryst. 24, 117 (1998).CrossRefGoogle Scholar
  4. 4.
    M. Kleman and J. Friedel, Rev. Mod. Phys. 80, 61 (2008).zbMATHMathSciNetADSCrossRefGoogle Scholar
  5. 5.
    H.-R. Trebin, Liq. Cryst. 24, 127 (1998).CrossRefGoogle Scholar
  6. 6.
    S. Digal, R. Ray, and A. M. Srivastava, Phys. Rev. Lett. 83, 5030 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    H. Mukai, P. R. G. Fernandes, B. F. de Oliveira, and G. S. Dias, Phys. Rev. E 78, 061704 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    V. A. Belyakov and V. E. Dmitrienko, Sov. Phys. Usp. 28, 535 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    R. D. Kamien and J. V. Selinger, J. Phys.: Condens. Matter 13, R1 (2001).ADSGoogle Scholar
  10. 10.
    P. V. Dolganov, H. T. Nguyen, E. I. Kats, V. K. Dolganov, and P. Cluzeau, Phys. Rev. E 75, 031706 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    P. V. Dolganov and P. Cluzeau, Phys. Rev. E 78, 021701 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    P. V. Dolganov, E. I. Kats, and P. Cluzeau, Phys. Rev. E 81, 031709 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    I. Kraus and R. B. Meyer, Phys. Rev. Lett. 82, 3815 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    K.-K. Loh, I. Kraus, and R. B. Meyer, Phys. Rev. E 62, 5115 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    R. B. Meyer, D. Konovalov, I. Kraus, and J.-B. Lee, Mol. Cryst. Liq. Cryst. 364, 123 (2001).CrossRefGoogle Scholar
  16. 16.
    J.-B. Lee, D. Konovalov, and R. B. Meyer, Phys. Rev. E 73, 051705 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    J.-B. Lee, R. A. Pelcovits, and R. B. Meyer, Phys. Rev. E 75, 051701 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    A. Pattanaporkratana, C. S. Park, J. E. Maclennan, and N. A. Clark, Ferroelectrics 344, 71 (2006).CrossRefGoogle Scholar
  19. 19.
    D. R. Link, G. Natale, S. Shao, N. A. Clark, E. Korblova, and D. M. Walba, Science 84, 3665 (1997).Google Scholar
  20. 20.
    Y. Hatwalne and T. C. Lubensky, Phys. Rev. E 52, 6240 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    D. H. van Winkle and N. A. Clark, Phys. Rev. A 38, 1573 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    G. A. Hinshaw, Jr., R. G. Petschek, and R. A. Pelcovits, Phys. Rev. Lett. 60, 1864 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    P. V. Dolganov, V. K. Dolganov, and P. Cluzeau, J. Exp. Theor. Phys. 116, 1043 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    D. R. Link, N. Chattham, J. E. Maclennan, and N. A. Clark, Phys. Rev. E 71, 021704 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    C. Y. Young, R. Pindak, N. A. Clark, and R. B. Meyer, Phys. Rev. Lett. 40, 773 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    D. Andrienko and M. P. Allen, Phys. Rev. E 61, 504 (2000).ADSCrossRefGoogle Scholar
  27. 27.
    P. V. Dolganov and P. Cluzeau, Phys. Rev. E 90, 062501 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • P. V. Dolganov
    • 1
  • N. S. Shuravin
    • 1
    • 2
  • V. K. Dolganov
    • 1
  • E. I. Kats
    • 3
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations