Advertisement

JETP Letters

, Volume 101, Issue 3, pp 149–153 | Cite as

On coherent mode-locking in a two-section laser

  • R. M. ArkhipovEmail author
  • M. V. Arkhipov
  • I. V. Babushkin
Optics and Laser Physics

Abstract

Currently existing lasers with passive mode-locking are two-section systems including an amplifier section and a saturable absorber section. The mechanism of generation of short pulses in them is based on the effects of saturation of the gain in the amplifier and absorption in the absorber, which prevent obtaining pulses with durations shorter than the relaxation time of the polarization in the amplifying and absorbing media. In this work, the new possibility of the generation of ultrashort pulses in a laser with passive mode-locking owing to the coherent character of the interaction of light with matter in the amplifying and absorbing media in ring and linear cavities has been theoretically analyzed. A practically interesting case where the amplifying and absorbing media are separated in the space of the cavity, rather than being homogeneously mixed in its volume, as was previously considered for such type of lasers, has been studied. It has been shown that the width of the spectrum of generated pulses can be much larger than the width of the amplification line and can vary depending on the parameters of the amplifying and absorbing media of the laser. The existence of nonsoliton scenarios of the regime of coherent passive mode synchronization, as well as the possibility of generation without injection of an auxiliary pulse, has been demonstrated.

Keywords

Dipole Moment JETP Letter Ultrashort Pulse Passive Mode Coherent Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Keller, Nature 424, 831 (2003).CrossRefADSGoogle Scholar
  2. 2.
    S. Rulliere, Femtosecond Laser Pulses (Springer Science, Berlin, 2005).CrossRefGoogle Scholar
  3. 3.
    E. U. Rafailov, M. A. Cataluna, and W. Sibett, Nature Photon. 1, 395 (2007).CrossRefADSGoogle Scholar
  4. 4.
    E. U. Rafailov, M. A. Cataluna, and E. A. Avrutin, Ultrafast Lasers Based on Quantum Dot Structures (Wiley, Berlin, 2011).CrossRefGoogle Scholar
  5. 5.
    D. Arsenijevi, M. Kleinert, and D. Bimberg, IEEE Photon. J. 6, 0700306 (2013).Google Scholar
  6. 6.
    P. G. Kryukov, Phys. Usp. 56, 849 (2013).CrossRefADSGoogle Scholar
  7. 7.
    H. A. Haus, IEEE J. Quantum Electron. 11, 736 (1975).CrossRefADSGoogle Scholar
  8. 8.
    H. A. Haus, IEEE J. Appl. Phys. 47, 3049 (1975).CrossRefADSGoogle Scholar
  9. 9.
    G. H. C. New, IEEE J. Quantum. Electron. 10, 115 (1974).CrossRefADSGoogle Scholar
  10. 10.
    Ya. I. Khanin, Fundamentals of Laser Dynamics (Cambridge International Science, 2006).Google Scholar
  11. 11.
    H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).CrossRefGoogle Scholar
  12. 12.
    F. X. Kurtner, J. A. der Au, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).CrossRefGoogle Scholar
  13. 13.
    A. G. Vladimirov and D. Turaev, Phys. Rev. A 72, 033808 (2005).CrossRefADSGoogle Scholar
  14. 14.
    R. M. Arkhipov, A. Pimenov, M. Radziunas, A. G. Vladimirov, D. Arsenjevic, D. Rachinskii, H. Schmeckebier, and D. Bimberg, IEEE J. Sel. Top. Quantum Electron. 19, 1100208 (2013).CrossRefGoogle Scholar
  15. 15.
    S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).CrossRefADSGoogle Scholar
  16. 16.
    P. G. Kryukov and V. S. Letokhov, Sov. Phys. Usp. 12, 641 (1970).CrossRefADSGoogle Scholar
  17. 17.
    I. A. Poluektov, Yu. M. Popov, and V. S. Roitberg, Sov. Phys. Usp. 18, 673 (1975).CrossRefADSGoogle Scholar
  18. 18.
    L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, 1975).Google Scholar
  19. 19.
    V. V. Kozlov and E. E. Fradkin, J. Exp. Theor. Phys. 80, 191 (1995).ADSGoogle Scholar
  20. 20.
    V. V. Kozlov, Phys. Rev. A 56, 1607 (1997).CrossRefADSGoogle Scholar
  21. 21.
    C. Menyuk and M. A. Talukder, Phys. Rev. Lett. 102, 23903 (2009).CrossRefADSGoogle Scholar
  22. 22.
    C. Menyuk and M. A. Talukder, Phys. Rev. A 79, 063841 (2009).CrossRefADSGoogle Scholar
  23. 23.
    V. V. Kozlov, N. N. Rosanov, and S. Wabnitz, Phys. Rev. A 84, 053810 (2011).CrossRefADSGoogle Scholar
  24. 24.
    V. V. Kozlov and N. N. Rosanov, Opt. Spectrosc. 114, 798 (2013).CrossRefADSGoogle Scholar
  25. 25.
    V. S. Egorov and I. A. Chekhonin, Opt. Spectrosc. 60, 405 (1986).ADSGoogle Scholar
  26. 26.
    V. P. Kalosha, M. Müller, and J. Herrmann, J. Opt. Soc. Am. B 16, 323 (1999).CrossRefADSGoogle Scholar
  27. 27.
    I. Babushkin, Yu. A. Logvin, and N. A. Loiko, Quantum Electron. 28, 104 (1998).CrossRefADSGoogle Scholar
  28. 28.
    I. Babushkin, Y. A. Logvin, and N. Loiko, J. Exp. Theor. Phys. 90, 133 (2000).CrossRefADSGoogle Scholar
  29. 29.
    J. Schüttler, I. Babushkin, and W. Lange, Phys. Rev. A 78, 035802 (2008).CrossRefADSGoogle Scholar
  30. 30.
    M. Schulz-Ruhtenberg, I. V. Babushkin, N. A. Loiko, K. F. Huang, and T. Ackemann, Phys. Rev. A 81, 023819 (2010).CrossRefADSGoogle Scholar
  31. 31.
    M. V. Arkhipov, R. M. Arkhipov, and S. A. Pulkin, Opt. Spectrosc. 114, 831 (2013).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • R. M. Arkhipov
    • 1
    • 2
    • 4
    Email author
  • M. V. Arkhipov
    • 2
  • I. V. Babushkin
    • 3
  1. 1.Weierstrass InstituteBerlinGermany
  2. 2.Faculty of PhysicsSt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia
  3. 3.Institute of Quantum OpticsLeibniz University HannoverHannoverGermany
  4. 4.Mathematisch-Naturwissenschaftliche FakultätHumbold-Universität zu BerlinBerlinGermany

Personalised recommendations