JETP Letters

, Volume 101, Issue 2, pp 125–129 | Cite as

Temperature derivative of the chemical potential and its magneto-oscillations in a two-dimensional system

  • Y. Tupikov
  • A. Yu. KuntsevichEmail author
  • V. M. Pudalov
  • I. S. Burmistrov


We report the first thermodynamic measurements of the temperature derivative of chemical potential (∂μ/∂T) in two-dimensional (2D) electron systems. In order to test the technique, we have chosen Schottky gated GaAs/AlGaAs heterojunctions and detected experimentally in this 2D system quantum magneto-oscillations of ∂μ/∂T. We also present a Lifshits-Kosevitch type theory for the ∂μ/∂T magneto-oscillations in 2D systems and compare the theory with experimental data. The magnetic field dependence of the ∂μ/∂T value appears to be sensitive to the density of states shape of Landau levels. The data in low magnetic field domain demonstrate brilliant agreement with theory for non-interacting Fermi gas with Lorentzian Landau level shape.


GaAs Fermi Energy JETP Letter Landau Level Temperature Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).CrossRefADSGoogle Scholar
  2. 2.
    A. Usher and M. Eliott, J. Phys.: Condens. Matter 21, 103202 (2009).ADSGoogle Scholar
  3. 3.
    R. Fletcher, P. T. Coleridge, and Y. Feng, Phys. Rev. B 52, 2823 (1995).CrossRefADSGoogle Scholar
  4. 4.
    J. K. Wang, J. H. Campbell, D. C. Tsui, and A. Y. Cho, Phys. Rev. B 38, 6174 (1988).CrossRefADSGoogle Scholar
  5. 5.
    V. M. Pudalov, S. G. Semenchinskii, and V. S. Edel’man, Sov. Phys. JETP 62, 1079 (1985).Google Scholar
  6. 6.
    V. M. Pudalov and S. G. Semenchinskii, JETP Lett. 44, 677 (1986).ADSGoogle Scholar
  7. 7.
    J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 50, 1760 (1994).CrossRefADSGoogle Scholar
  8. 8.
    A. Isihara and L. Smrcka, J. Phys. C 19, 6777 (1986).CrossRefADSGoogle Scholar
  9. 9.
    W. Thomson, Philos. Mag. 46, 82 (1898).CrossRefGoogle Scholar
  10. 10.
    N. Teneh, A. Yu. Kuntsevich, V. M. Pudalov, and M. Reznikov, Phys. Rev. Lett. 109, 226403 (2012).CrossRefADSGoogle Scholar
  11. 11.
    V. I. Nizhankovskii, Europ. Phys. J. B 18, 397 (2000).CrossRefADSGoogle Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics. Part I (Butterworth-Heinemann, 1980).Google Scholar
  13. 13.
    V. G. Mokerov, B. K. Medvedev, V. M. Pudalov, D. A. Rinber, S. G. Semenchinsky, and Yu. V. Slepnev, JETP Lett. 47, 59 (1988).Google Scholar
  14. 14.
    A. Yu. Kuntsevich, Y. Tupikov, V. M. Pudalov, and I. S. Burmistrov, Nature Com. (to be published).Google Scholar
  15. 15.
    S. M. Girvin and A. H. MacDonald, in Perspectives on Quantum Hall Effects (Wiley, New York, 1997).Google Scholar
  16. 16.
    A. Potts, R. Shepherd, W. G. Herrenden-Harker, M. Elliott, C. L. Jones, A. Usher, G. A. C. Jones, D. A. Ritchie, E. H. Linfield, and M. Grimshaw, J. Phys.: Condens. Matter 8, 5189 (1996).ADSGoogle Scholar
  17. 17.
    P. T. Coleridge, R. Stoner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989).CrossRefADSGoogle Scholar
  18. 18.
    F. Wegner, Z. Phys. B 51, 279 (1983).CrossRefADSGoogle Scholar
  19. 19.
    E. Brezin, D. J. Gross, and C. Itzykson, Nucl. Phys. B 235, 24 (1984).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    L. B. Ioffe and A. I. Larkin, Sov. Phys. JETP 81, 1048 (1981).Google Scholar
  21. 21.
    I. Affleck, J. Phys. C: Solid State Phys. 17, 2323 (1984).CrossRefADSGoogle Scholar
  22. 22.
    K. B. Efetov and V. G. Marikhin, Phys. Rev. B 40, 12126 (1989).CrossRefADSGoogle Scholar
  23. 23.
    P. D. Grigoriev, A. M. Dyugaev, and Yu. N. Ovchinnikov, JETP Lett. 78, 148 (2003).CrossRefADSGoogle Scholar
  24. 24.
    I. S. Burmistrov and M. A. Skvortsov, JETP Lett. 78, 156 (2003).CrossRefADSGoogle Scholar
  25. 25.
    I. V. Kukushkin, S. V. Meshkov, and V. B. Timofeev, Sov. Phys. Usp. 31, 511 (1988).CrossRefADSGoogle Scholar
  26. 26.
    I. M. Lifshitz and A. M. Kosevich, Sov. Phys. JETP 2, 636 (1956).Google Scholar
  27. 27.
    J. M. Luttinger, Phys. Rev. 121, 1251 (1961).CrossRefADSzbMATHMathSciNetGoogle Scholar
  28. 28.
    Yu. A. Bychkov and L. P. Gor’kov, Sov. Phys. JETP 14, 1132 (1962).Google Scholar
  29. 29.
    S. Curnoe and P. C. E. Stamp, Phys. Rev. Lett. 80, 3312 (1998).CrossRefADSGoogle Scholar
  30. 30.
    G. W. Martin, D. L. Maslov, and M. Yu. Reizer, Phys. Rev. B 68, 241309(R) (2003).CrossRefADSGoogle Scholar
  31. 31.
    Y. Adamov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B 73, 045426 (2006).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • Y. Tupikov
    • 1
    • 3
  • A. Yu. Kuntsevich
    • 1
    • 2
    Email author
  • V. M. Pudalov
    • 1
    • 2
  • I. S. Burmistrov
    • 4
    • 2
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  3. 3.Department of PhysicsPennsylvania State UniversityUniversity ParkUSA
  4. 4.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations