Advertisement

JETP Letters

, Volume 101, Issue 1, pp 17–21 | Cite as

Quantum autoionization of molecular excitons and photovoltaic conversion

  • V. A. Benderskii
  • E. I. Kats
Condensed Matter
  • 30 Downloads

Abstract

This paper explores a novel way of charge separation (autoionization) of molecular excitons, by quantum tunneling through a p-n nanojunction. This mechanism can dominate the standard one (i.e., when Frenkel exciton is ionized at donor or acceptor impurity sites) for very short, nanosized, p-n junction, where the junction electric field can be strong for relatively small (on the order of 1 V) voltage drop. Within a simple one-dimensional model for the depletion region of the p-n junction (donor and acceptor reservoirs connected by a short molecular wire) we compute the quantum yield Y b for the tunneling exciton autoionization in the “bulk” of the depletion region. For modern organic photosensitive materials with p-n junction size on the order of 10–20 nm, Y b could be close to 1. Such a high efficiency of the charge separation (one of the main factor entering figure of merit, indicating how good are photovoltaic conversion cells) makes this new mechanism potentially very perspective for the applications.

Keywords

JETP Letter Charge Separation Depletion Region Quantum Tunneling Diagonal Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Kearns and M. Calvin, J. Chem. Phys. 29, 950 (1958).CrossRefADSGoogle Scholar
  2. 2.
    V. A. Benderskii, N. N. Usov, and M. I. Fedorov, Dokl. Akad. Nauk SSSR 183, 1117 (1968).Google Scholar
  3. 3.
    M. I. Fedorov and V. A. Benderskii, Sov. Phys. Semicond. 4, 1198 (1970); Sov. Phys. Semicond. 4, 1720 (1970).Google Scholar
  4. 4.
    A. K. Ghosh, D. L. Morel, T. Feng, R. F. Shaw, and C. A. Rowe, Jr., J. Appl. Phys. 45, 230 (1974).CrossRefADSGoogle Scholar
  5. 5.
    P. Sullivan, A. Daraud, I. Hancox, N. Beaumont, G. Mirri, J. H. R. Tucker, R. A. Hatton, M. Shipman, and T. S. Jones, Adv. Energy Mater. 7, 352 (2011).CrossRefGoogle Scholar
  6. 6.
    Y. Shinmura, M. Kubo, N. Ishiyama, T. Kaji, and M. Hiramoto, AIP Adv. 2, 032145 (2013).CrossRefADSGoogle Scholar
  7. 7.
    Organic Solar Cells, Ed. by W. C. H. Choy (Springer, London, 2013).Google Scholar
  8. 8.
    R. E. Merrifield, J. Chem. Phys. 34, 1835 (1961).CrossRefADSGoogle Scholar
  9. 9.
    V. A. Benderskii, L. A. Blumenfeld, and D. A. Popov, Zh. Strukt. Khim. 7, 370 (1966).Google Scholar
  10. 10.
    V. A. Benderskii and E. I. Kats, J. Exp. Theor. Phys. 116, 1 (2013).CrossRefADSGoogle Scholar
  11. 11.
    A. I. Baz, Ya. B. Zeldovich, and A. M. Perelomov, Scattering, Reaction and Decays in Nonrelativistic Quantum Mechanics (Nauka, Moscow, 1971; Academic, New York, 1980).Google Scholar
  12. 12.
    L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia

Personalised recommendations