JETP Letters

, Volume 101, Issue 1, pp 12–16 | Cite as

Confinement of inertial particles in the viscous boundary layer of a turbulent flow

Plasma, Hydro- and Gas Dynamics

Abstract

We examine space and momentum probability distribution of inertial particles when they are placed in the viscous boundary sublayer of a turbulent flow. We demonstrate that at varying elasticity of the particle collisions with the wall the confinement-deconfinement transition occurs: at β < βc the particles are blocked near the wall whereas at β > βc they gradually pass into bulk. Here, β is the elasticity coefficient and βc = exp(−π/√3).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bec, L. Biferale, M. Cencini, A. Lanotte, and F. Toschi, J. Fluid Mech. 646, 527 (2010).CrossRefADSMATHGoogle Scholar
  2. 2.
    J. Bec, L. Biferale, M. Cencini, A. S. Lanotte, and F. Toschi, J. Phys.: Conf. Ser. 333, 012003 (2011).ADSGoogle Scholar
  3. 3.
    M. W. Reeks, Flow, Turbul. Combust. 92, 3 (2014).CrossRefGoogle Scholar
  4. 4.
    M. Caporaloni, F. Tampieri, F. Trombetti, and O. Vittori, J. Atmos. Sci. 32, 565 (1975).CrossRefADSGoogle Scholar
  5. 5.
    M. W. Reeks, J. Aeros. Sci. 14, 729 (1983).CrossRefGoogle Scholar
  6. 6.
    J. W. Brooke, K. Kontomaris, T. J. Hanratty, and J. B. McLaughlin, Phys. Fluids A 4, 825 (1992).CrossRefADSGoogle Scholar
  7. 7.
    M. Sofiev, V. Sofieva, T. Elperin, N. Kleeorin, I. Rogachevskii, and S. S. Zilitinkevich, J. Geophys. Res. 114, 1 (2009).Google Scholar
  8. 8.
    G. Sardina, P. Schlatter, L. Brandt, F. Picano, and C. M. Casciola, J. Fluid Mech. 699, 50 (2012).CrossRefADSMATHMathSciNetGoogle Scholar
  9. 9.
    J. B. McLaughlin, Phys. Fluids 1, 1211 (1989).CrossRefADSGoogle Scholar
  10. 10.
    A. Chernykh and V. Lebedev, JETP Lett. 87, 682 (2008).CrossRefADSGoogle Scholar
  11. 11.
    A. Chernykh, V. Lebedev, J. Exp. Theor. Phys. 113, 352 (2011).CrossRefADSGoogle Scholar
  12. 12.
    S. Belan, I. Fouxon, and G. Falkovich, Phys. Rev. Lett. 112, 234502 (2014).CrossRefADSGoogle Scholar
  13. 13.
    A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (Dover, New York, 2007).Google Scholar
  14. 14.
    H. Risken, Fokker-Planck Equation (Springer, Berlin, 1984).CrossRefMATHGoogle Scholar
  15. 15.
    D. P. Sikovsky, Flow, Turbul. Combust. 92, 41 (2014).CrossRefGoogle Scholar
  16. 16.
    S. Belan, Concentration of Diffusional Particles in Viscous Boundary Sublayer of Turbulent Flow (2014, submitted).Google Scholar
  17. 17.
    S. Belan, A. Chernykh, and G. Falkovich, in preparation.Google Scholar
  18. 18.
    G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • S. Belan
    • 1
    • 2
  • A. Chernykh
    • 3
    • 4
  • V. Lebedev
    • 1
    • 2
  • S. Vergeles
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  3. 3.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations